aboutsummaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/admin-guide/kernel-parameters.txt8
-rw-r--r--Documentation/virt/kvm/api.rst85
-rw-r--r--Documentation/virt/kvm/mmu.rst8
3 files changed, 92 insertions, 9 deletions
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index 2fba82431efb..86a2456d94ba 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -4150,6 +4150,14 @@
Override pmtimer IOPort with a hex value.
e.g. pmtmr=0x508
+ pmu_override= [PPC] Override the PMU.
+ This option takes over the PMU facility, so it is no
+ longer usable by perf. Setting this option starts the
+ PMU counters by setting MMCR0 to 0 (the FC bit is
+ cleared). If a number is given, then MMCR1 is set to
+ that number, otherwise (e.g., 'pmu_override=on'), MMCR1
+ remains 0.
+
pm_debug_messages [SUSPEND,KNL]
Enable suspend/resume debug messages during boot up.
diff --git a/Documentation/virt/kvm/api.rst b/Documentation/virt/kvm/api.rst
index aeeb071c7688..d3791a14eb9a 100644
--- a/Documentation/virt/kvm/api.rst
+++ b/Documentation/virt/kvm/api.rst
@@ -371,6 +371,9 @@ The bits in the dirty bitmap are cleared before the ioctl returns, unless
KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is enabled. For more information,
see the description of the capability.
+Note that the Xen shared info page, if configured, shall always be assumed
+to be dirty. KVM will not explicitly mark it such.
+
4.9 KVM_SET_MEMORY_ALIAS
------------------------
@@ -1566,6 +1569,7 @@ otherwise it will return EBUSY error.
struct kvm_xsave {
__u32 region[1024];
+ __u32 extra[0];
};
This ioctl would copy current vcpu's xsave struct to the userspace.
@@ -1574,7 +1578,7 @@ This ioctl would copy current vcpu's xsave struct to the userspace.
4.43 KVM_SET_XSAVE
------------------
-:Capability: KVM_CAP_XSAVE
+:Capability: KVM_CAP_XSAVE and KVM_CAP_XSAVE2
:Architectures: x86
:Type: vcpu ioctl
:Parameters: struct kvm_xsave (in)
@@ -1585,9 +1589,18 @@ This ioctl would copy current vcpu's xsave struct to the userspace.
struct kvm_xsave {
__u32 region[1024];
+ __u32 extra[0];
};
-This ioctl would copy userspace's xsave struct to the kernel.
+This ioctl would copy userspace's xsave struct to the kernel. It copies
+as many bytes as are returned by KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2),
+when invoked on the vm file descriptor. The size value returned by
+KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2) will always be at least 4096.
+Currently, it is only greater than 4096 if a dynamic feature has been
+enabled with ``arch_prctl()``, but this may change in the future.
+
+The offsets of the state save areas in struct kvm_xsave follow the
+contents of CPUID leaf 0xD on the host.
4.44 KVM_GET_XCRS
@@ -1684,6 +1697,10 @@ userspace capabilities, and with user requirements (for example, the
user may wish to constrain cpuid to emulate older hardware, or for
feature consistency across a cluster).
+Dynamically-enabled feature bits need to be requested with
+``arch_prctl()`` before calling this ioctl. Feature bits that have not
+been requested are excluded from the result.
+
Note that certain capabilities, such as KVM_CAP_X86_DISABLE_EXITS, may
expose cpuid features (e.g. MONITOR) which are not supported by kvm in
its default configuration. If userspace enables such capabilities, it
@@ -1796,6 +1813,7 @@ No flags are specified so far, the corresponding field must be set to zero.
struct kvm_irq_routing_msi msi;
struct kvm_irq_routing_s390_adapter adapter;
struct kvm_irq_routing_hv_sint hv_sint;
+ struct kvm_irq_routing_xen_evtchn xen_evtchn;
__u32 pad[8];
} u;
};
@@ -1805,6 +1823,7 @@ No flags are specified so far, the corresponding field must be set to zero.
#define KVM_IRQ_ROUTING_MSI 2
#define KVM_IRQ_ROUTING_S390_ADAPTER 3
#define KVM_IRQ_ROUTING_HV_SINT 4
+ #define KVM_IRQ_ROUTING_XEN_EVTCHN 5
flags:
@@ -1856,6 +1875,20 @@ address_hi must be zero.
__u32 sint;
};
+ struct kvm_irq_routing_xen_evtchn {
+ __u32 port;
+ __u32 vcpu;
+ __u32 priority;
+ };
+
+
+When KVM_CAP_XEN_HVM includes the KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL bit
+in its indication of supported features, routing to Xen event channels
+is supported. Although the priority field is present, only the value
+KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL is supported, which means delivery by
+2 level event channels. FIFO event channel support may be added in
+the future.
+
4.55 KVM_SET_TSC_KHZ
--------------------
@@ -3701,7 +3734,7 @@ KVM with the currently defined set of flags.
:Architectures: s390
:Type: vm ioctl
:Parameters: struct kvm_s390_skeys
-:Returns: 0 on success, KVM_S390_GET_KEYS_NONE if guest is not using storage
+:Returns: 0 on success, KVM_S390_GET_SKEYS_NONE if guest is not using storage
keys, negative value on error
This ioctl is used to get guest storage key values on the s390
@@ -3720,7 +3753,7 @@ you want to get.
The count field is the number of consecutive frames (starting from start_gfn)
whose storage keys to get. The count field must be at least 1 and the maximum
-allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
+allowed value is defined as KVM_S390_SKEYS_MAX. Values outside this range
will cause the ioctl to return -EINVAL.
The skeydata_addr field is the address to a buffer large enough to hold count
@@ -3744,7 +3777,7 @@ you want to set.
The count field is the number of consecutive frames (starting from start_gfn)
whose storage keys to get. The count field must be at least 1 and the maximum
-allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
+allowed value is defined as KVM_S390_SKEYS_MAX. Values outside this range
will cause the ioctl to return -EINVAL.
The skeydata_addr field is the address to a buffer containing count bytes of
@@ -5134,6 +5167,15 @@ KVM_XEN_ATTR_TYPE_SHARED_INFO
not aware of the Xen CPU id which is used as the index into the
vcpu_info[] array, so cannot know the correct default location.
+ Note that the shared info page may be constantly written to by KVM;
+ it contains the event channel bitmap used to deliver interrupts to
+ a Xen guest, amongst other things. It is exempt from dirty tracking
+ mechanisms — KVM will not explicitly mark the page as dirty each
+ time an event channel interrupt is delivered to the guest! Thus,
+ userspace should always assume that the designated GFN is dirty if
+ any vCPU has been running or any event channel interrupts can be
+ routed to the guest.
+
KVM_XEN_ATTR_TYPE_UPCALL_VECTOR
Sets the exception vector used to deliver Xen event channel upcalls.
@@ -5503,6 +5545,34 @@ the trailing ``'\0'``, is indicated by ``name_size`` in the header.
The Stats Data block contains an array of 64-bit values in the same order
as the descriptors in Descriptors block.
+4.42 KVM_GET_XSAVE2
+------------------
+
+:Capability: KVM_CAP_XSAVE2
+:Architectures: x86
+:Type: vcpu ioctl
+:Parameters: struct kvm_xsave (out)
+:Returns: 0 on success, -1 on error
+
+
+::
+
+ struct kvm_xsave {
+ __u32 region[1024];
+ __u32 extra[0];
+ };
+
+This ioctl would copy current vcpu's xsave struct to the userspace. It
+copies as many bytes as are returned by KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2)
+when invoked on the vm file descriptor. The size value returned by
+KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2) will always be at least 4096.
+Currently, it is only greater than 4096 if a dynamic feature has been
+enabled with ``arch_prctl()``, but this may change in the future.
+
+The offsets of the state save areas in struct kvm_xsave follow the contents
+of CPUID leaf 0xD on the host.
+
+
5. The kvm_run structure
========================
@@ -7401,6 +7471,7 @@ PVHVM guests. Valid flags are::
#define KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL (1 << 1)
#define KVM_XEN_HVM_CONFIG_SHARED_INFO (1 << 2)
#define KVM_XEN_HVM_CONFIG_RUNSTATE (1 << 2)
+ #define KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL (1 << 3)
The KVM_XEN_HVM_CONFIG_HYPERCALL_MSR flag indicates that the KVM_XEN_HVM_CONFIG
ioctl is available, for the guest to set its hypercall page.
@@ -7420,6 +7491,10 @@ The KVM_XEN_HVM_CONFIG_RUNSTATE flag indicates that the runstate-related
features KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR/_CURRENT/_DATA/_ADJUST are
supported by the KVM_XEN_VCPU_SET_ATTR/KVM_XEN_VCPU_GET_ATTR ioctls.
+The KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL flag indicates that IRQ routing entries
+of the type KVM_IRQ_ROUTING_XEN_EVTCHN are supported, with the priority
+field set to indicate 2 level event channel delivery.
+
8.31 KVM_CAP_PPC_MULTITCE
-------------------------
diff --git a/Documentation/virt/kvm/mmu.rst b/Documentation/virt/kvm/mmu.rst
index f60f5488e121..5b1ebad24c77 100644
--- a/Documentation/virt/kvm/mmu.rst
+++ b/Documentation/virt/kvm/mmu.rst
@@ -161,7 +161,7 @@ Shadow pages contain the following information:
If clear, this page corresponds to a guest page table denoted by the gfn
field.
role.quadrant:
- When role.gpte_is_8_bytes=0, the guest uses 32-bit gptes while the host uses 64-bit
+ When role.has_4_byte_gpte=1, the guest uses 32-bit gptes while the host uses 64-bit
sptes. That means a guest page table contains more ptes than the host,
so multiple shadow pages are needed to shadow one guest page.
For first-level shadow pages, role.quadrant can be 0 or 1 and denotes the
@@ -177,9 +177,9 @@ Shadow pages contain the following information:
The page is invalid and should not be used. It is a root page that is
currently pinned (by a cpu hardware register pointing to it); once it is
unpinned it will be destroyed.
- role.gpte_is_8_bytes:
- Reflects the size of the guest PTE for which the page is valid, i.e. '1'
- if 64-bit gptes are in use, '0' if 32-bit gptes are in use.
+ role.has_4_byte_gpte:
+ Reflects the size of the guest PTE for which the page is valid, i.e. '0'
+ if direct map or 64-bit gptes are in use, '1' if 32-bit gptes are in use.
role.efer_nx:
Contains the value of efer.nx for which the page is valid.
role.cr0_wp: