// SPDX-License-Identifier: GPL-2.0-only #include #include #include #include static const union loongarch_instruction breakpoint_insn = { .reg0i15_format = { .opcode = break_op, .immediate = BRK_KPROBE_BP, } }; static const union loongarch_instruction singlestep_insn = { .reg0i15_format = { .opcode = break_op, .immediate = BRK_KPROBE_SSTEPBP, } }; DEFINE_PER_CPU(struct kprobe *, current_kprobe); DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); static bool insns_not_supported(union loongarch_instruction insn) { switch (insn.reg2i14_format.opcode) { case llw_op: case lld_op: case scw_op: case scd_op: pr_notice("kprobe: ll and sc instructions are not supported\n"); return true; } switch (insn.reg1i21_format.opcode) { case bceqz_op: pr_notice("kprobe: bceqz and bcnez instructions are not supported\n"); return true; } return false; } NOKPROBE_SYMBOL(insns_not_supported); static bool insns_need_simulation(struct kprobe *p) { if (is_pc_ins(&p->opcode)) return true; if (is_branch_ins(&p->opcode)) return true; return false; } NOKPROBE_SYMBOL(insns_need_simulation); static void arch_simulate_insn(struct kprobe *p, struct pt_regs *regs) { if (is_pc_ins(&p->opcode)) simu_pc(regs, p->opcode); else if (is_branch_ins(&p->opcode)) simu_branch(regs, p->opcode); } NOKPROBE_SYMBOL(arch_simulate_insn); static void arch_prepare_ss_slot(struct kprobe *p) { p->ainsn.insn[0] = *p->addr; p->ainsn.insn[1] = singlestep_insn; p->ainsn.restore = (unsigned long)p->addr + LOONGARCH_INSN_SIZE; } NOKPROBE_SYMBOL(arch_prepare_ss_slot); static void arch_prepare_simulate(struct kprobe *p) { p->ainsn.restore = 0; } NOKPROBE_SYMBOL(arch_prepare_simulate); int arch_prepare_kprobe(struct kprobe *p) { if ((unsigned long)p->addr & 0x3) return -EILSEQ; /* copy instruction */ p->opcode = *p->addr; /* decode instruction */ if (insns_not_supported(p->opcode)) return -EINVAL; if (insns_need_simulation(p)) { p->ainsn.insn = NULL; } else { p->ainsn.insn = get_insn_slot(); if (!p->ainsn.insn) return -ENOMEM; } /* prepare the instruction */ if (p->ainsn.insn) arch_prepare_ss_slot(p); else arch_prepare_simulate(p); return 0; } NOKPROBE_SYMBOL(arch_prepare_kprobe); /* Install breakpoint in text */ void arch_arm_kprobe(struct kprobe *p) { *p->addr = breakpoint_insn; flush_insn_slot(p); } NOKPROBE_SYMBOL(arch_arm_kprobe); /* Remove breakpoint from text */ void arch_disarm_kprobe(struct kprobe *p) { *p->addr = p->opcode; flush_insn_slot(p); } NOKPROBE_SYMBOL(arch_disarm_kprobe); void arch_remove_kprobe(struct kprobe *p) { if (p->ainsn.insn) { free_insn_slot(p->ainsn.insn, 0); p->ainsn.insn = NULL; } } NOKPROBE_SYMBOL(arch_remove_kprobe); static void save_previous_kprobe(struct kprobe_ctlblk *kcb) { kcb->prev_kprobe.kp = kprobe_running(); kcb->prev_kprobe.status = kcb->kprobe_status; } NOKPROBE_SYMBOL(save_previous_kprobe); static void restore_previous_kprobe(struct kprobe_ctlblk *kcb) { __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); kcb->kprobe_status = kcb->prev_kprobe.status; } NOKPROBE_SYMBOL(restore_previous_kprobe); static void set_current_kprobe(struct kprobe *p) { __this_cpu_write(current_kprobe, p); } NOKPROBE_SYMBOL(set_current_kprobe); /* * Interrupts need to be disabled before single-step mode is set, * and not reenabled until after single-step mode ends. * Without disabling interrupt on local CPU, there is a chance of * interrupt occurrence in the period of exception return and start * of out-of-line single-step, that result in wrongly single stepping * into the interrupt handler. */ static void save_local_irqflag(struct kprobe_ctlblk *kcb, struct pt_regs *regs) { kcb->saved_status = regs->csr_prmd; regs->csr_prmd &= ~CSR_PRMD_PIE; } NOKPROBE_SYMBOL(save_local_irqflag); static void restore_local_irqflag(struct kprobe_ctlblk *kcb, struct pt_regs *regs) { regs->csr_prmd = kcb->saved_status; } NOKPROBE_SYMBOL(restore_local_irqflag); static void post_kprobe_handler(struct kprobe *cur, struct kprobe_ctlblk *kcb, struct pt_regs *regs) { /* return addr restore if non-branching insn */ if (cur->ainsn.restore != 0) instruction_pointer_set(regs, cur->ainsn.restore); /* restore back original saved kprobe variables and continue */ if (kcb->kprobe_status == KPROBE_REENTER) { restore_previous_kprobe(kcb); preempt_enable_no_resched(); return; } /* * update the kcb status even if the cur->post_handler is * not set because reset_curent_kprobe() doesn't update kcb. */ kcb->kprobe_status = KPROBE_HIT_SSDONE; if (cur->post_handler) cur->post_handler(cur, regs, 0); reset_current_kprobe(); preempt_enable_no_resched(); } NOKPROBE_SYMBOL(post_kprobe_handler); static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb, int reenter) { if (reenter) { save_previous_kprobe(kcb); set_current_kprobe(p); kcb->kprobe_status = KPROBE_REENTER; } else { kcb->kprobe_status = KPROBE_HIT_SS; } if (p->ainsn.insn) { /* IRQs and single stepping do not mix well */ save_local_irqflag(kcb, regs); /* set ip register to prepare for single stepping */ regs->csr_era = (unsigned long)p->ainsn.insn; } else { /* simulate single steping */ arch_simulate_insn(p, regs); /* now go for post processing */ post_kprobe_handler(p, kcb, regs); } } NOKPROBE_SYMBOL(setup_singlestep); static bool reenter_kprobe(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) { switch (kcb->kprobe_status) { case KPROBE_HIT_SS: case KPROBE_HIT_SSDONE: case KPROBE_HIT_ACTIVE: kprobes_inc_nmissed_count(p); setup_singlestep(p, regs, kcb, 1); break; case KPROBE_REENTER: pr_warn("Failed to recover from reentered kprobes.\n"); dump_kprobe(p); WARN_ON_ONCE(1); break; default: WARN_ON(1); return false; } return true; } NOKPROBE_SYMBOL(reenter_kprobe); bool kprobe_breakpoint_handler(struct pt_regs *regs) { struct kprobe_ctlblk *kcb; struct kprobe *p, *cur_kprobe; kprobe_opcode_t *addr = (kprobe_opcode_t *)regs->csr_era; /* * We don't want to be preempted for the entire * duration of kprobe processing. */ preempt_disable(); kcb = get_kprobe_ctlblk(); cur_kprobe = kprobe_running(); p = get_kprobe(addr); if (p) { if (cur_kprobe) { if (reenter_kprobe(p, regs, kcb)) return true; } else { /* Probe hit */ set_current_kprobe(p); kcb->kprobe_status = KPROBE_HIT_ACTIVE; /* * If we have no pre-handler or it returned 0, we * continue with normal processing. If we have a * pre-handler and it returned non-zero, it will * modify the execution path and no need to single * stepping. Let's just reset current kprobe and exit. * * pre_handler can hit a breakpoint and can step thru * before return. */ if (!p->pre_handler || !p->pre_handler(p, regs)) { setup_singlestep(p, regs, kcb, 0); } else { reset_current_kprobe(); preempt_enable_no_resched(); } return true; } } if (addr->word != breakpoint_insn.word) { /* * The breakpoint instruction was removed right * after we hit it. Another cpu has removed * either a probepoint or a debugger breakpoint * at this address. In either case, no further * handling of this interrupt is appropriate. * Return back to original instruction, and continue. */ regs->csr_era = (unsigned long)addr; preempt_enable_no_resched(); return true; } preempt_enable_no_resched(); return false; } NOKPROBE_SYMBOL(kprobe_breakpoint_handler); bool kprobe_singlestep_handler(struct pt_regs *regs) { struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); unsigned long addr = instruction_pointer(regs); if (cur && (kcb->kprobe_status & (KPROBE_HIT_SS | KPROBE_REENTER)) && ((unsigned long)&cur->ainsn.insn[1] == addr)) { restore_local_irqflag(kcb, regs); post_kprobe_handler(cur, kcb, regs); return true; } preempt_enable_no_resched(); return false; } NOKPROBE_SYMBOL(kprobe_singlestep_handler); bool kprobe_fault_handler(struct pt_regs *regs, int trapnr) { struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); switch (kcb->kprobe_status) { case KPROBE_HIT_SS: case KPROBE_REENTER: /* * We are here because the instruction being single * stepped caused a page fault. We reset the current * kprobe and the ip points back to the probe address * and allow the page fault handler to continue as a * normal page fault. */ regs->csr_era = (unsigned long)cur->addr; WARN_ON_ONCE(!instruction_pointer(regs)); if (kcb->kprobe_status == KPROBE_REENTER) { restore_previous_kprobe(kcb); } else { restore_local_irqflag(kcb, regs); reset_current_kprobe(); } preempt_enable_no_resched(); break; } return false; } NOKPROBE_SYMBOL(kprobe_fault_handler); /* * Provide a blacklist of symbols identifying ranges which cannot be kprobed. * This blacklist is exposed to userspace via debugfs (kprobes/blacklist). */ int __init arch_populate_kprobe_blacklist(void) { return kprobe_add_area_blacklist((unsigned long)__irqentry_text_start, (unsigned long)__irqentry_text_end); } int __init arch_init_kprobes(void) { return 0; } /* ASM function that handles the kretprobes must not be probed */ NOKPROBE_SYMBOL(__kretprobe_trampoline); /* Called from __kretprobe_trampoline */ void __used *trampoline_probe_handler(struct pt_regs *regs) { return (void *)kretprobe_trampoline_handler(regs, NULL); } NOKPROBE_SYMBOL(trampoline_probe_handler); void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) { ri->ret_addr = (kprobe_opcode_t *)regs->regs[1]; ri->fp = NULL; /* Replace the return addr with trampoline addr */ regs->regs[1] = (unsigned long)&__kretprobe_trampoline; } NOKPROBE_SYMBOL(arch_prepare_kretprobe); int arch_trampoline_kprobe(struct kprobe *p) { return 0; } NOKPROBE_SYMBOL(arch_trampoline_kprobe);