// SPDX-License-Identifier: GPL-2.0 /* * KUnit test for the FPGA Manager * * Copyright (C) 2023 Red Hat, Inc. * * Author: Marco Pagani */ #include #include #include #include #include #include #define HEADER_FILL 'H' #define IMAGE_FILL 'P' #define IMAGE_BLOCK 1024 #define HEADER_SIZE IMAGE_BLOCK #define IMAGE_SIZE (IMAGE_BLOCK * 4) struct mgr_stats { bool header_match; bool image_match; u32 seq_num; u32 op_parse_header_seq; u32 op_write_init_seq; u32 op_write_seq; u32 op_write_sg_seq; u32 op_write_complete_seq; enum fpga_mgr_states op_parse_header_state; enum fpga_mgr_states op_write_init_state; enum fpga_mgr_states op_write_state; enum fpga_mgr_states op_write_sg_state; enum fpga_mgr_states op_write_complete_state; }; struct mgr_ctx { struct fpga_image_info *img_info; struct fpga_manager *mgr; struct platform_device *pdev; struct mgr_stats stats; }; /** * init_test_buffer() - Allocate and initialize a test image in a buffer. * @test: KUnit test context object. * @count: image size in bytes. * * Return: pointer to the newly allocated image. */ static char *init_test_buffer(struct kunit *test, size_t count) { char *buf; KUNIT_ASSERT_GE(test, count, HEADER_SIZE); buf = kunit_kzalloc(test, count, GFP_KERNEL); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, buf); memset(buf, HEADER_FILL, HEADER_SIZE); memset(buf + HEADER_SIZE, IMAGE_FILL, count - HEADER_SIZE); return buf; } /* * Check the image header. Do not return an error code if the image check fails * since, in this case, it is a failure of the FPGA manager itself, not this * op that tests it. */ static int op_parse_header(struct fpga_manager *mgr, struct fpga_image_info *info, const char *buf, size_t count) { struct mgr_stats *stats = mgr->priv; size_t i; stats->op_parse_header_state = mgr->state; stats->op_parse_header_seq = stats->seq_num++; /* Set header_size and data_size for later */ info->header_size = HEADER_SIZE; info->data_size = info->count - HEADER_SIZE; stats->header_match = true; for (i = 0; i < info->header_size; i++) { if (buf[i] != HEADER_FILL) { stats->header_match = false; break; } } return 0; } static int op_write_init(struct fpga_manager *mgr, struct fpga_image_info *info, const char *buf, size_t count) { struct mgr_stats *stats = mgr->priv; stats->op_write_init_state = mgr->state; stats->op_write_init_seq = stats->seq_num++; return 0; } /* * Check the image data. As with op_parse_header, do not return an error code * if the image check fails. */ static int op_write(struct fpga_manager *mgr, const char *buf, size_t count) { struct mgr_stats *stats = mgr->priv; size_t i; stats->op_write_state = mgr->state; stats->op_write_seq = stats->seq_num++; stats->image_match = true; for (i = 0; i < count; i++) { if (buf[i] != IMAGE_FILL) { stats->image_match = false; break; } } return 0; } /* * Check the image data, but first skip the header since write_sg will get * the whole image in sg_table. As with op_parse_header, do not return an * error code if the image check fails. */ static int op_write_sg(struct fpga_manager *mgr, struct sg_table *sgt) { struct mgr_stats *stats = mgr->priv; struct sg_mapping_iter miter; char *img; size_t i; stats->op_write_sg_state = mgr->state; stats->op_write_sg_seq = stats->seq_num++; stats->image_match = true; sg_miter_start(&miter, sgt->sgl, sgt->nents, SG_MITER_FROM_SG); if (!sg_miter_skip(&miter, HEADER_SIZE)) { stats->image_match = false; goto out; } while (sg_miter_next(&miter)) { img = miter.addr; for (i = 0; i < miter.length; i++) { if (img[i] != IMAGE_FILL) { stats->image_match = false; goto out; } } } out: sg_miter_stop(&miter); return 0; } static int op_write_complete(struct fpga_manager *mgr, struct fpga_image_info *info) { struct mgr_stats *stats = mgr->priv; stats->op_write_complete_state = mgr->state; stats->op_write_complete_seq = stats->seq_num++; return 0; } /* * Fake FPGA manager that implements all ops required to check the programming * sequence using a single contiguous buffer and a scatter gather table. */ static const struct fpga_manager_ops fake_mgr_ops = { .skip_header = true, .parse_header = op_parse_header, .write_init = op_write_init, .write = op_write, .write_sg = op_write_sg, .write_complete = op_write_complete, }; static void fpga_mgr_test_get(struct kunit *test) { struct mgr_ctx *ctx = test->priv; struct fpga_manager *mgr; mgr = fpga_mgr_get(&ctx->pdev->dev); KUNIT_EXPECT_PTR_EQ(test, mgr, ctx->mgr); fpga_mgr_put(ctx->mgr); } static void fpga_mgr_test_lock(struct kunit *test) { struct mgr_ctx *ctx = test->priv; int ret; ret = fpga_mgr_lock(ctx->mgr); KUNIT_EXPECT_EQ(test, ret, 0); ret = fpga_mgr_lock(ctx->mgr); KUNIT_EXPECT_EQ(test, ret, -EBUSY); fpga_mgr_unlock(ctx->mgr); } /* Check the programming sequence using an image in a buffer */ static void fpga_mgr_test_img_load_buf(struct kunit *test) { struct mgr_ctx *ctx = test->priv; char *img_buf; int ret; img_buf = init_test_buffer(test, IMAGE_SIZE); ctx->img_info->count = IMAGE_SIZE; ctx->img_info->buf = img_buf; ret = fpga_mgr_load(ctx->mgr, ctx->img_info); KUNIT_EXPECT_EQ(test, ret, 0); KUNIT_EXPECT_TRUE(test, ctx->stats.header_match); KUNIT_EXPECT_TRUE(test, ctx->stats.image_match); KUNIT_EXPECT_EQ(test, ctx->stats.op_parse_header_state, FPGA_MGR_STATE_PARSE_HEADER); KUNIT_EXPECT_EQ(test, ctx->stats.op_write_init_state, FPGA_MGR_STATE_WRITE_INIT); KUNIT_EXPECT_EQ(test, ctx->stats.op_write_state, FPGA_MGR_STATE_WRITE); KUNIT_EXPECT_EQ(test, ctx->stats.op_write_complete_state, FPGA_MGR_STATE_WRITE_COMPLETE); KUNIT_EXPECT_EQ(test, ctx->stats.op_write_init_seq, ctx->stats.op_parse_header_seq + 1); KUNIT_EXPECT_EQ(test, ctx->stats.op_write_seq, ctx->stats.op_parse_header_seq + 2); KUNIT_EXPECT_EQ(test, ctx->stats.op_write_complete_seq, ctx->stats.op_parse_header_seq + 3); } /* Check the programming sequence using an image in a scatter gather table */ static void fpga_mgr_test_img_load_sgt(struct kunit *test) { struct mgr_ctx *ctx = test->priv; struct sg_table *sgt; char *img_buf; int ret; img_buf = init_test_buffer(test, IMAGE_SIZE); sgt = kunit_kzalloc(test, sizeof(*sgt), GFP_KERNEL); ret = sg_alloc_table(sgt, 1, GFP_KERNEL); KUNIT_ASSERT_EQ(test, ret, 0); sg_init_one(sgt->sgl, img_buf, IMAGE_SIZE); ctx->img_info->sgt = sgt; ret = fpga_mgr_load(ctx->mgr, ctx->img_info); KUNIT_EXPECT_EQ(test, ret, 0); KUNIT_EXPECT_TRUE(test, ctx->stats.header_match); KUNIT_EXPECT_TRUE(test, ctx->stats.image_match); KUNIT_EXPECT_EQ(test, ctx->stats.op_parse_header_state, FPGA_MGR_STATE_PARSE_HEADER); KUNIT_EXPECT_EQ(test, ctx->stats.op_write_init_state, FPGA_MGR_STATE_WRITE_INIT); KUNIT_EXPECT_EQ(test, ctx->stats.op_write_sg_state, FPGA_MGR_STATE_WRITE); KUNIT_EXPECT_EQ(test, ctx->stats.op_write_complete_state, FPGA_MGR_STATE_WRITE_COMPLETE); KUNIT_EXPECT_EQ(test, ctx->stats.op_write_init_seq, ctx->stats.op_parse_header_seq + 1); KUNIT_EXPECT_EQ(test, ctx->stats.op_write_sg_seq, ctx->stats.op_parse_header_seq + 2); KUNIT_EXPECT_EQ(test, ctx->stats.op_write_complete_seq, ctx->stats.op_parse_header_seq + 3); sg_free_table(ctx->img_info->sgt); } static int fpga_mgr_test_init(struct kunit *test) { struct mgr_ctx *ctx; ctx = kunit_kzalloc(test, sizeof(*ctx), GFP_KERNEL); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx); ctx->pdev = platform_device_register_simple("mgr_pdev", PLATFORM_DEVID_AUTO, NULL, 0); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->pdev); ctx->mgr = devm_fpga_mgr_register(&ctx->pdev->dev, "Fake FPGA Manager", &fake_mgr_ops, &ctx->stats); KUNIT_ASSERT_FALSE(test, IS_ERR_OR_NULL(ctx->mgr)); ctx->img_info = fpga_image_info_alloc(&ctx->pdev->dev); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->img_info); test->priv = ctx; return 0; } static void fpga_mgr_test_exit(struct kunit *test) { struct mgr_ctx *ctx = test->priv; fpga_image_info_free(ctx->img_info); platform_device_unregister(ctx->pdev); } static struct kunit_case fpga_mgr_test_cases[] = { KUNIT_CASE(fpga_mgr_test_get), KUNIT_CASE(fpga_mgr_test_lock), KUNIT_CASE(fpga_mgr_test_img_load_buf), KUNIT_CASE(fpga_mgr_test_img_load_sgt), {} }; static struct kunit_suite fpga_mgr_suite = { .name = "fpga_mgr", .init = fpga_mgr_test_init, .exit = fpga_mgr_test_exit, .test_cases = fpga_mgr_test_cases, }; kunit_test_suite(fpga_mgr_suite); MODULE_LICENSE("GPL");