// SPDX-License-Identifier: MIT #include #include #include #include "nouveau_drv.h" #include "nouveau_gem.h" #include "nouveau_mem.h" #include "nouveau_dma.h" #include "nouveau_exec.h" #include "nouveau_abi16.h" #include "nouveau_sched.h" /* FIXME * * We want to make sure that jobs currently executing can't be deferred by * other jobs competing for the hardware. Otherwise we might end up with job * timeouts just because of too many clients submitting too many jobs. We don't * want jobs to time out because of system load, but because of the job being * too bulky. * * For now allow for up to 16 concurrent jobs in flight until we know how many * rings the hardware can process in parallel. */ #define NOUVEAU_SCHED_HW_SUBMISSIONS 16 #define NOUVEAU_SCHED_JOB_TIMEOUT_MS 10000 int nouveau_job_init(struct nouveau_job *job, struct nouveau_job_args *args) { struct nouveau_sched_entity *entity = args->sched_entity; int ret; job->file_priv = args->file_priv; job->cli = nouveau_cli(args->file_priv); job->entity = entity; job->sync = args->sync; job->resv_usage = args->resv_usage; job->ops = args->ops; job->in_sync.count = args->in_sync.count; if (job->in_sync.count) { if (job->sync) return -EINVAL; job->in_sync.data = kmemdup(args->in_sync.s, sizeof(*args->in_sync.s) * args->in_sync.count, GFP_KERNEL); if (!job->in_sync.data) return -ENOMEM; } job->out_sync.count = args->out_sync.count; if (job->out_sync.count) { if (job->sync) { ret = -EINVAL; goto err_free_in_sync; } job->out_sync.data = kmemdup(args->out_sync.s, sizeof(*args->out_sync.s) * args->out_sync.count, GFP_KERNEL); if (!job->out_sync.data) { ret = -ENOMEM; goto err_free_in_sync; } job->out_sync.objs = kcalloc(job->out_sync.count, sizeof(*job->out_sync.objs), GFP_KERNEL); if (!job->out_sync.objs) { ret = -ENOMEM; goto err_free_out_sync; } job->out_sync.chains = kcalloc(job->out_sync.count, sizeof(*job->out_sync.chains), GFP_KERNEL); if (!job->out_sync.chains) { ret = -ENOMEM; goto err_free_objs; } } ret = drm_sched_job_init(&job->base, &entity->base, NULL); if (ret) goto err_free_chains; job->state = NOUVEAU_JOB_INITIALIZED; return 0; err_free_chains: kfree(job->out_sync.chains); err_free_objs: kfree(job->out_sync.objs); err_free_out_sync: kfree(job->out_sync.data); err_free_in_sync: kfree(job->in_sync.data); return ret; } void nouveau_job_free(struct nouveau_job *job) { kfree(job->in_sync.data); kfree(job->out_sync.data); kfree(job->out_sync.objs); kfree(job->out_sync.chains); } void nouveau_job_fini(struct nouveau_job *job) { dma_fence_put(job->done_fence); drm_sched_job_cleanup(&job->base); job->ops->free(job); } static int sync_find_fence(struct nouveau_job *job, struct drm_nouveau_sync *sync, struct dma_fence **fence) { u32 stype = sync->flags & DRM_NOUVEAU_SYNC_TYPE_MASK; u64 point = 0; int ret; if (stype != DRM_NOUVEAU_SYNC_SYNCOBJ && stype != DRM_NOUVEAU_SYNC_TIMELINE_SYNCOBJ) return -EOPNOTSUPP; if (stype == DRM_NOUVEAU_SYNC_TIMELINE_SYNCOBJ) point = sync->timeline_value; ret = drm_syncobj_find_fence(job->file_priv, sync->handle, point, 0 /* flags */, fence); if (ret) return ret; return 0; } static int nouveau_job_add_deps(struct nouveau_job *job) { struct dma_fence *in_fence = NULL; int ret, i; for (i = 0; i < job->in_sync.count; i++) { struct drm_nouveau_sync *sync = &job->in_sync.data[i]; ret = sync_find_fence(job, sync, &in_fence); if (ret) { NV_PRINTK(warn, job->cli, "Failed to find syncobj (-> in): handle=%d\n", sync->handle); return ret; } ret = drm_sched_job_add_dependency(&job->base, in_fence); if (ret) return ret; } return 0; } static void nouveau_job_fence_attach_cleanup(struct nouveau_job *job) { int i; for (i = 0; i < job->out_sync.count; i++) { struct drm_syncobj *obj = job->out_sync.objs[i]; struct dma_fence_chain *chain = job->out_sync.chains[i]; if (obj) drm_syncobj_put(obj); if (chain) dma_fence_chain_free(chain); } } static int nouveau_job_fence_attach_prepare(struct nouveau_job *job) { int i, ret; for (i = 0; i < job->out_sync.count; i++) { struct drm_nouveau_sync *sync = &job->out_sync.data[i]; struct drm_syncobj **pobj = &job->out_sync.objs[i]; struct dma_fence_chain **pchain = &job->out_sync.chains[i]; u32 stype = sync->flags & DRM_NOUVEAU_SYNC_TYPE_MASK; if (stype != DRM_NOUVEAU_SYNC_SYNCOBJ && stype != DRM_NOUVEAU_SYNC_TIMELINE_SYNCOBJ) { ret = -EINVAL; goto err_sync_cleanup; } *pobj = drm_syncobj_find(job->file_priv, sync->handle); if (!*pobj) { NV_PRINTK(warn, job->cli, "Failed to find syncobj (-> out): handle=%d\n", sync->handle); ret = -ENOENT; goto err_sync_cleanup; } if (stype == DRM_NOUVEAU_SYNC_TIMELINE_SYNCOBJ) { *pchain = dma_fence_chain_alloc(); if (!*pchain) { ret = -ENOMEM; goto err_sync_cleanup; } } } return 0; err_sync_cleanup: nouveau_job_fence_attach_cleanup(job); return ret; } static void nouveau_job_fence_attach(struct nouveau_job *job) { struct dma_fence *fence = job->done_fence; int i; for (i = 0; i < job->out_sync.count; i++) { struct drm_nouveau_sync *sync = &job->out_sync.data[i]; struct drm_syncobj **pobj = &job->out_sync.objs[i]; struct dma_fence_chain **pchain = &job->out_sync.chains[i]; u32 stype = sync->flags & DRM_NOUVEAU_SYNC_TYPE_MASK; if (stype == DRM_NOUVEAU_SYNC_TIMELINE_SYNCOBJ) { drm_syncobj_add_point(*pobj, *pchain, fence, sync->timeline_value); } else { drm_syncobj_replace_fence(*pobj, fence); } drm_syncobj_put(*pobj); *pobj = NULL; *pchain = NULL; } } int nouveau_job_submit(struct nouveau_job *job) { struct nouveau_sched_entity *entity = to_nouveau_sched_entity(job->base.entity); struct dma_fence *done_fence = NULL; int ret; ret = nouveau_job_add_deps(job); if (ret) goto err; ret = nouveau_job_fence_attach_prepare(job); if (ret) goto err; /* Make sure the job appears on the sched_entity's queue in the same * order as it was submitted. */ mutex_lock(&entity->mutex); /* Guarantee we won't fail after the submit() callback returned * successfully. */ if (job->ops->submit) { ret = job->ops->submit(job); if (ret) goto err_cleanup; } drm_sched_job_arm(&job->base); job->done_fence = dma_fence_get(&job->base.s_fence->finished); if (job->sync) done_fence = dma_fence_get(job->done_fence); /* If a sched job depends on a dma-fence from a job from the same GPU * scheduler instance, but a different scheduler entity, the GPU * scheduler does only wait for the particular job to be scheduled, * rather than for the job to fully complete. This is due to the GPU * scheduler assuming that there is a scheduler instance per ring. * However, the current implementation, in order to avoid arbitrary * amounts of kthreads, has a single scheduler instance while scheduler * entities represent rings. * * As a workaround, set the DRM_SCHED_FENCE_DONT_PIPELINE for all * out-fences in order to force the scheduler to wait for full job * completion for dependent jobs from different entities and same * scheduler instance. * * There is some work in progress [1] to address the issues of firmware * schedulers; once it is in-tree the scheduler topology in Nouveau * should be re-worked accordingly. * * [1] https://lore.kernel.org/dri-devel/20230801205103.627779-1-matthew.brost@intel.com/ */ set_bit(DRM_SCHED_FENCE_DONT_PIPELINE, &job->done_fence->flags); if (job->ops->armed_submit) job->ops->armed_submit(job); nouveau_job_fence_attach(job); /* Set job state before pushing the job to the scheduler, * such that we do not overwrite the job state set in run(). */ job->state = NOUVEAU_JOB_SUBMIT_SUCCESS; drm_sched_entity_push_job(&job->base); mutex_unlock(&entity->mutex); if (done_fence) { dma_fence_wait(done_fence, true); dma_fence_put(done_fence); } return 0; err_cleanup: mutex_unlock(&entity->mutex); nouveau_job_fence_attach_cleanup(job); err: job->state = NOUVEAU_JOB_SUBMIT_FAILED; return ret; } bool nouveau_sched_entity_qwork(struct nouveau_sched_entity *entity, struct work_struct *work) { return queue_work(entity->sched_wq, work); } static struct dma_fence * nouveau_job_run(struct nouveau_job *job) { struct dma_fence *fence; fence = job->ops->run(job); if (IS_ERR(fence)) job->state = NOUVEAU_JOB_RUN_FAILED; else job->state = NOUVEAU_JOB_RUN_SUCCESS; return fence; } static struct dma_fence * nouveau_sched_run_job(struct drm_sched_job *sched_job) { struct nouveau_job *job = to_nouveau_job(sched_job); return nouveau_job_run(job); } static enum drm_gpu_sched_stat nouveau_sched_timedout_job(struct drm_sched_job *sched_job) { struct nouveau_job *job = to_nouveau_job(sched_job); NV_PRINTK(warn, job->cli, "Job timed out.\n"); if (job->ops->timeout) return job->ops->timeout(job); return DRM_GPU_SCHED_STAT_ENODEV; } static void nouveau_sched_free_job(struct drm_sched_job *sched_job) { struct nouveau_job *job = to_nouveau_job(sched_job); nouveau_job_fini(job); } int nouveau_sched_entity_init(struct nouveau_sched_entity *entity, struct drm_gpu_scheduler *sched, struct workqueue_struct *sched_wq) { mutex_init(&entity->mutex); spin_lock_init(&entity->job.list.lock); INIT_LIST_HEAD(&entity->job.list.head); init_waitqueue_head(&entity->job.wq); entity->sched_wq = sched_wq; return drm_sched_entity_init(&entity->base, DRM_SCHED_PRIORITY_NORMAL, &sched, 1, NULL); } void nouveau_sched_entity_fini(struct nouveau_sched_entity *entity) { drm_sched_entity_destroy(&entity->base); } static const struct drm_sched_backend_ops nouveau_sched_ops = { .run_job = nouveau_sched_run_job, .timedout_job = nouveau_sched_timedout_job, .free_job = nouveau_sched_free_job, }; int nouveau_sched_init(struct nouveau_drm *drm) { struct drm_gpu_scheduler *sched = &drm->sched; long job_hang_limit = msecs_to_jiffies(NOUVEAU_SCHED_JOB_TIMEOUT_MS); drm->sched_wq = create_singlethread_workqueue("nouveau_sched_wq"); if (!drm->sched_wq) return -ENOMEM; return drm_sched_init(sched, &nouveau_sched_ops, NOUVEAU_SCHED_HW_SUBMISSIONS, 0, job_hang_limit, NULL, NULL, "nouveau_sched", drm->dev->dev); } void nouveau_sched_fini(struct nouveau_drm *drm) { destroy_workqueue(drm->sched_wq); drm_sched_fini(&drm->sched); }