/* * tools/testing/selftests/kvm/lib/x86.c * * Copyright (C) 2018, Google LLC. * * This work is licensed under the terms of the GNU GPL, version 2. */ #define _GNU_SOURCE /* for program_invocation_name */ #include "test_util.h" #include "kvm_util.h" #include "x86.h" #include "vmx.h" /* Create a default VM for VMX tests. * * Input Args: * vcpuid - The id of the single VCPU to add to the VM. * guest_code - The vCPU's entry point * * Output Args: None * * Return: * Pointer to opaque structure that describes the created VM. */ struct kvm_vm * vm_create_default_vmx(uint32_t vcpuid, vmx_guest_code_t guest_code) { struct kvm_cpuid2 *cpuid; struct kvm_vm *vm; vm_vaddr_t vmxon_vaddr; vm_paddr_t vmxon_paddr; vm_vaddr_t vmcs_vaddr; vm_paddr_t vmcs_paddr; vm = vm_create_default(vcpuid, (void *) guest_code); /* Enable nesting in CPUID */ vcpu_set_cpuid(vm, vcpuid, kvm_get_supported_cpuid()); /* Setup of a region of guest memory for the vmxon region. */ vmxon_vaddr = vm_vaddr_alloc(vm, getpagesize(), 0, 0, 0); vmxon_paddr = addr_gva2gpa(vm, vmxon_vaddr); /* Setup of a region of guest memory for a vmcs. */ vmcs_vaddr = vm_vaddr_alloc(vm, getpagesize(), 0, 0, 0); vmcs_paddr = addr_gva2gpa(vm, vmcs_vaddr); vcpu_args_set(vm, vcpuid, 4, vmxon_vaddr, vmxon_paddr, vmcs_vaddr, vmcs_paddr); return vm; } void prepare_for_vmx_operation(void) { uint64_t feature_control; uint64_t required; unsigned long cr0; unsigned long cr4; /* * Ensure bits in CR0 and CR4 are valid in VMX operation: * - Bit X is 1 in _FIXED0: bit X is fixed to 1 in CRx. * - Bit X is 0 in _FIXED1: bit X is fixed to 0 in CRx. */ __asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0) : : "memory"); cr0 &= rdmsr(MSR_IA32_VMX_CR0_FIXED1); cr0 |= rdmsr(MSR_IA32_VMX_CR0_FIXED0); __asm__ __volatile__("mov %0, %%cr0" : : "r"(cr0) : "memory"); __asm__ __volatile__("mov %%cr4, %0" : "=r"(cr4) : : "memory"); cr4 &= rdmsr(MSR_IA32_VMX_CR4_FIXED1); cr4 |= rdmsr(MSR_IA32_VMX_CR4_FIXED0); /* Enable VMX operation */ cr4 |= X86_CR4_VMXE; __asm__ __volatile__("mov %0, %%cr4" : : "r"(cr4) : "memory"); /* * Configure IA32_FEATURE_CONTROL MSR to allow VMXON: * Bit 0: Lock bit. If clear, VMXON causes a #GP. * Bit 2: Enables VMXON outside of SMX operation. If clear, VMXON * outside of SMX causes a #GP. */ required = FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; required |= FEATURE_CONTROL_LOCKED; feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL); if ((feature_control & required) != required) wrmsr(MSR_IA32_FEATURE_CONTROL, feature_control | required); } /* * Initialize the control fields to the most basic settings possible. */ static inline void init_vmcs_control_fields(void) { vmwrite(VIRTUAL_PROCESSOR_ID, 0); vmwrite(POSTED_INTR_NV, 0); vmwrite(PIN_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_PINBASED_CTLS)); vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_PROCBASED_CTLS)); vmwrite(EXCEPTION_BITMAP, 0); vmwrite(PAGE_FAULT_ERROR_CODE_MASK, 0); vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, -1); /* Never match */ vmwrite(CR3_TARGET_COUNT, 0); vmwrite(VM_EXIT_CONTROLS, rdmsr(MSR_IA32_VMX_EXIT_CTLS) | VM_EXIT_HOST_ADDR_SPACE_SIZE); /* 64-bit host */ vmwrite(VM_EXIT_MSR_STORE_COUNT, 0); vmwrite(VM_EXIT_MSR_LOAD_COUNT, 0); vmwrite(VM_ENTRY_CONTROLS, rdmsr(MSR_IA32_VMX_ENTRY_CTLS) | VM_ENTRY_IA32E_MODE); /* 64-bit guest */ vmwrite(VM_ENTRY_MSR_LOAD_COUNT, 0); vmwrite(VM_ENTRY_INTR_INFO_FIELD, 0); vmwrite(TPR_THRESHOLD, 0); vmwrite(SECONDARY_VM_EXEC_CONTROL, 0); vmwrite(CR0_GUEST_HOST_MASK, 0); vmwrite(CR4_GUEST_HOST_MASK, 0); vmwrite(CR0_READ_SHADOW, get_cr0()); vmwrite(CR4_READ_SHADOW, get_cr4()); } /* * Initialize the host state fields based on the current host state, with * the exception of HOST_RSP and HOST_RIP, which should be set by vmlaunch * or vmresume. */ static inline void init_vmcs_host_state(void) { uint32_t exit_controls = vmreadz(VM_EXIT_CONTROLS); vmwrite(HOST_ES_SELECTOR, get_es()); vmwrite(HOST_CS_SELECTOR, get_cs()); vmwrite(HOST_SS_SELECTOR, get_ss()); vmwrite(HOST_DS_SELECTOR, get_ds()); vmwrite(HOST_FS_SELECTOR, get_fs()); vmwrite(HOST_GS_SELECTOR, get_gs()); vmwrite(HOST_TR_SELECTOR, get_tr()); if (exit_controls & VM_EXIT_LOAD_IA32_PAT) vmwrite(HOST_IA32_PAT, rdmsr(MSR_IA32_CR_PAT)); if (exit_controls & VM_EXIT_LOAD_IA32_EFER) vmwrite(HOST_IA32_EFER, rdmsr(MSR_EFER)); if (exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) vmwrite(HOST_IA32_PERF_GLOBAL_CTRL, rdmsr(MSR_CORE_PERF_GLOBAL_CTRL)); vmwrite(HOST_IA32_SYSENTER_CS, rdmsr(MSR_IA32_SYSENTER_CS)); vmwrite(HOST_CR0, get_cr0()); vmwrite(HOST_CR3, get_cr3()); vmwrite(HOST_CR4, get_cr4()); vmwrite(HOST_FS_BASE, rdmsr(MSR_FS_BASE)); vmwrite(HOST_GS_BASE, rdmsr(MSR_GS_BASE)); vmwrite(HOST_TR_BASE, get_desc64_base((struct desc64 *)(get_gdt_base() + get_tr()))); vmwrite(HOST_GDTR_BASE, get_gdt_base()); vmwrite(HOST_IDTR_BASE, get_idt_base()); vmwrite(HOST_IA32_SYSENTER_ESP, rdmsr(MSR_IA32_SYSENTER_ESP)); vmwrite(HOST_IA32_SYSENTER_EIP, rdmsr(MSR_IA32_SYSENTER_EIP)); } /* * Initialize the guest state fields essentially as a clone of * the host state fields. Some host state fields have fixed * values, and we set the corresponding guest state fields accordingly. */ static inline void init_vmcs_guest_state(void *rip, void *rsp) { vmwrite(GUEST_ES_SELECTOR, vmreadz(HOST_ES_SELECTOR)); vmwrite(GUEST_CS_SELECTOR, vmreadz(HOST_CS_SELECTOR)); vmwrite(GUEST_SS_SELECTOR, vmreadz(HOST_SS_SELECTOR)); vmwrite(GUEST_DS_SELECTOR, vmreadz(HOST_DS_SELECTOR)); vmwrite(GUEST_FS_SELECTOR, vmreadz(HOST_FS_SELECTOR)); vmwrite(GUEST_GS_SELECTOR, vmreadz(HOST_GS_SELECTOR)); vmwrite(GUEST_LDTR_SELECTOR, 0); vmwrite(GUEST_TR_SELECTOR, vmreadz(HOST_TR_SELECTOR)); vmwrite(GUEST_INTR_STATUS, 0); vmwrite(GUEST_PML_INDEX, 0); vmwrite(VMCS_LINK_POINTER, -1ll); vmwrite(GUEST_IA32_DEBUGCTL, 0); vmwrite(GUEST_IA32_PAT, vmreadz(HOST_IA32_PAT)); vmwrite(GUEST_IA32_EFER, vmreadz(HOST_IA32_EFER)); vmwrite(GUEST_IA32_PERF_GLOBAL_CTRL, vmreadz(HOST_IA32_PERF_GLOBAL_CTRL)); vmwrite(GUEST_ES_LIMIT, -1); vmwrite(GUEST_CS_LIMIT, -1); vmwrite(GUEST_SS_LIMIT, -1); vmwrite(GUEST_DS_LIMIT, -1); vmwrite(GUEST_FS_LIMIT, -1); vmwrite(GUEST_GS_LIMIT, -1); vmwrite(GUEST_LDTR_LIMIT, -1); vmwrite(GUEST_TR_LIMIT, 0x67); vmwrite(GUEST_GDTR_LIMIT, 0xffff); vmwrite(GUEST_IDTR_LIMIT, 0xffff); vmwrite(GUEST_ES_AR_BYTES, vmreadz(GUEST_ES_SELECTOR) == 0 ? 0x10000 : 0xc093); vmwrite(GUEST_CS_AR_BYTES, 0xa09b); vmwrite(GUEST_SS_AR_BYTES, 0xc093); vmwrite(GUEST_DS_AR_BYTES, vmreadz(GUEST_DS_SELECTOR) == 0 ? 0x10000 : 0xc093); vmwrite(GUEST_FS_AR_BYTES, vmreadz(GUEST_FS_SELECTOR) == 0 ? 0x10000 : 0xc093); vmwrite(GUEST_GS_AR_BYTES, vmreadz(GUEST_GS_SELECTOR) == 0 ? 0x10000 : 0xc093); vmwrite(GUEST_LDTR_AR_BYTES, 0x10000); vmwrite(GUEST_TR_AR_BYTES, 0x8b); vmwrite(GUEST_INTERRUPTIBILITY_INFO, 0); vmwrite(GUEST_ACTIVITY_STATE, 0); vmwrite(GUEST_SYSENTER_CS, vmreadz(HOST_IA32_SYSENTER_CS)); vmwrite(VMX_PREEMPTION_TIMER_VALUE, 0); vmwrite(GUEST_CR0, vmreadz(HOST_CR0)); vmwrite(GUEST_CR3, vmreadz(HOST_CR3)); vmwrite(GUEST_CR4, vmreadz(HOST_CR4)); vmwrite(GUEST_ES_BASE, 0); vmwrite(GUEST_CS_BASE, 0); vmwrite(GUEST_SS_BASE, 0); vmwrite(GUEST_DS_BASE, 0); vmwrite(GUEST_FS_BASE, vmreadz(HOST_FS_BASE)); vmwrite(GUEST_GS_BASE, vmreadz(HOST_GS_BASE)); vmwrite(GUEST_LDTR_BASE, 0); vmwrite(GUEST_TR_BASE, vmreadz(HOST_TR_BASE)); vmwrite(GUEST_GDTR_BASE, vmreadz(HOST_GDTR_BASE)); vmwrite(GUEST_IDTR_BASE, vmreadz(HOST_IDTR_BASE)); vmwrite(GUEST_DR7, 0x400); vmwrite(GUEST_RSP, (uint64_t)rsp); vmwrite(GUEST_RIP, (uint64_t)rip); vmwrite(GUEST_RFLAGS, 2); vmwrite(GUEST_PENDING_DBG_EXCEPTIONS, 0); vmwrite(GUEST_SYSENTER_ESP, vmreadz(HOST_IA32_SYSENTER_ESP)); vmwrite(GUEST_SYSENTER_EIP, vmreadz(HOST_IA32_SYSENTER_EIP)); } void prepare_vmcs(void *guest_rip, void *guest_rsp) { init_vmcs_control_fields(); init_vmcs_host_state(); init_vmcs_guest_state(guest_rip, guest_rsp); }