aboutsummaryrefslogtreecommitdiff
path: root/arch/x86/crypto/Kconfig
diff options
context:
space:
mode:
authorGravatar Taehee Yoo <ap420073@gmail.com> 2022-09-16 12:57:35 +0000
committerGravatar Herbert Xu <herbert@gondor.apana.org.au> 2022-09-24 16:14:44 +0800
commitba3579e6e45c693495a50c516278749c5e3d9977 (patch)
tree35c4489c44ea1b4c6d25762d59c7dae01437c279 /arch/x86/crypto/Kconfig
parentcrypto: aria - prepare generic module for optimized implementations (diff)
downloadlinux-ba3579e6e45c693495a50c516278749c5e3d9977.tar.gz
linux-ba3579e6e45c693495a50c516278749c5e3d9977.tar.bz2
linux-ba3579e6e45c693495a50c516278749c5e3d9977.zip
crypto: aria-avx - add AES-NI/AVX/x86_64/GFNI assembler implementation of aria cipher
The implementation is based on the 32-bit implementation of the aria. Also, aria-avx process steps are the similar to the camellia-avx. 1. Byteslice(16way) 2. Add-round-key. 3. Sbox 4. Diffusion layer. Except for s-box, all steps are the same as the aria-generic implementation. s-box step is very similar to camellia and sm4 implementation. There are 2 implementations for s-box step. One is to use AES-NI and affine transformation, which is the same as Camellia, sm4, and others. Another is to use GFNI. GFNI implementation is faster than AES-NI implementation. So, it uses GFNI implementation if the running CPU supports GFNI. There are 4 s-boxes in the ARIA and the 2 s-boxes are the same as AES's s-boxes. To calculate the first sbox, it just uses the aesenclast and then inverts shift_row. No more process is needed for this job because the first s-box is the same as the AES encryption s-box. To calculate the second sbox(invert of s1), it just uses the aesdeclast and then inverts shift_row. No more process is needed for this job because the second s-box is the same as the AES decryption s-box. To calculate the third s-box, it uses the aesenclast, then affine transformation, which is combined AES inverse affine and ARIA S2. To calculate the last s-box, it uses the aesdeclast, then affine transformation, which is combined X2 and AES forward affine. The optimized third and last s-box logic and GFNI s-box logic are implemented by Jussi Kivilinna. The aria-generic implementation is based on a 32-bit implementation, not an 8-bit implementation. the aria-avx Diffusion Layer implementation is based on aria-generic implementation because 8-bit implementation is not fit for parallel implementation but 32-bit is enough to fit for this. Signed-off-by: Taehee Yoo <ap420073@gmail.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Diffstat (limited to 'arch/x86/crypto/Kconfig')
-rw-r--r--arch/x86/crypto/Kconfig18
1 files changed, 18 insertions, 0 deletions
diff --git a/arch/x86/crypto/Kconfig b/arch/x86/crypto/Kconfig
index 9bb0f7939c6b..71c4c473d34b 100644
--- a/arch/x86/crypto/Kconfig
+++ b/arch/x86/crypto/Kconfig
@@ -286,6 +286,24 @@ config CRYPTO_TWOFISH_AVX_X86_64
Processes eight blocks in parallel.
+config CRYPTO_ARIA_AESNI_AVX_X86_64
+ tristate "Ciphers: ARIA with modes: ECB, CTR (AES-NI/AVX/GFNI)"
+ depends on X86 && 64BIT
+ select CRYPTO_SKCIPHER
+ select CRYPTO_SIMD
+ select CRYPTO_ALGAPI
+ select CRYPTO_ARIA
+ help
+ Length-preserving cipher: ARIA cipher algorithms
+ (RFC 5794) with ECB and CTR modes
+
+ Architecture: x86_64 using:
+ - AES-NI (AES New Instructions)
+ - AVX (Advanced Vector Extensions)
+ - GFNI (Galois Field New Instructions)
+
+ Processes 16 blocks in parallel.
+
config CRYPTO_CHACHA20_X86_64
tristate "Ciphers: ChaCha20, XChaCha20, XChaCha12 (SSSE3/AVX2/AVX-512VL)"
depends on X86 && 64BIT