aboutsummaryrefslogtreecommitdiff
path: root/arch
diff options
context:
space:
mode:
authorGravatar Linus Torvalds <torvalds@linux-foundation.org> 2022-08-02 17:45:14 -0700
committerGravatar Linus Torvalds <torvalds@linux-foundation.org> 2022-08-02 17:45:14 -0700
commitc2a24a7a036b3bd3a2e6c66730dfc777cae6540a (patch)
tree659b1c18156bd402d85514a724c47adbc6de0f0d /arch
parentMerge tag 'random-6.0-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/ke... (diff)
parentcrypto: tcrypt - Remove the static variable initialisations to NULL (diff)
downloadlinux-c2a24a7a036b3bd3a2e6c66730dfc777cae6540a.tar.gz
linux-c2a24a7a036b3bd3a2e6c66730dfc777cae6540a.tar.bz2
linux-c2a24a7a036b3bd3a2e6c66730dfc777cae6540a.zip
Merge tag 'v5.20-p1' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto updates from Herbert Xu: "API: - Make proc files report fips module name and version Algorithms: - Move generic SHA1 code into lib/crypto - Implement Chinese Remainder Theorem for RSA - Remove blake2s - Add XCTR with x86/arm64 acceleration - Add POLYVAL with x86/arm64 acceleration - Add HCTR2 - Add ARIA Drivers: - Add support for new CCP/PSP device ID in ccp" * tag 'v5.20-p1' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (89 commits) crypto: tcrypt - Remove the static variable initialisations to NULL crypto: arm64/poly1305 - fix a read out-of-bound crypto: hisilicon/zip - Use the bitmap API to allocate bitmaps crypto: hisilicon/sec - fix auth key size error crypto: ccree - Remove a useless dma_supported() call crypto: ccp - Add support for new CCP/PSP device ID crypto: inside-secure - Add missing MODULE_DEVICE_TABLE for of crypto: hisilicon/hpre - don't use GFP_KERNEL to alloc mem during softirq crypto: testmgr - some more fixes to RSA test vectors cyrpto: powerpc/aes - delete the rebundant word "block" in comments hwrng: via - Fix comment typo crypto: twofish - Fix comment typo crypto: rmd160 - fix Kconfig "its" grammar crypto: keembay-ocs-ecc - Drop if with an always false condition Documentation: qat: rewrite description Documentation: qat: Use code block for qat sysfs example crypto: lib - add module license to libsha1 crypto: lib - make the sha1 library optional crypto: lib - move lib/sha1.c into lib/crypto/ crypto: fips - make proc files report fips module name and version ...
Diffstat (limited to 'arch')
-rw-r--r--arch/arm/crypto/Kconfig2
-rw-r--r--arch/arm/crypto/Makefile4
-rw-r--r--arch/arm/crypto/blake2s-shash.c75
-rw-r--r--arch/arm64/crypto/Kconfig10
-rw-r--r--arch/arm64/crypto/Makefile3
-rw-r--r--arch/arm64/crypto/aes-glue.c80
-rw-r--r--arch/arm64/crypto/aes-modes.S349
-rw-r--r--arch/arm64/crypto/aes-neon.S2
-rw-r--r--arch/arm64/crypto/poly1305-glue.c2
-rw-r--r--arch/arm64/crypto/polyval-ce-core.S361
-rw-r--r--arch/arm64/crypto/polyval-ce-glue.c191
-rw-r--r--arch/powerpc/crypto/aes-spe-glue.c2
-rw-r--r--arch/x86/crypto/Makefile7
-rw-r--r--arch/x86/crypto/aes_ctrby8_avx-x86_64.S232
-rw-r--r--arch/x86/crypto/aesni-intel_glue.c114
-rw-r--r--arch/x86/crypto/blake2s-glue.c3
-rw-r--r--arch/x86/crypto/blake2s-shash.c77
-rw-r--r--arch/x86/crypto/blowfish_glue.c4
-rw-r--r--arch/x86/crypto/polyval-clmulni_asm.S321
-rw-r--r--arch/x86/crypto/polyval-clmulni_glue.c203
20 files changed, 1688 insertions, 354 deletions
diff --git a/arch/arm/crypto/Kconfig b/arch/arm/crypto/Kconfig
index e4dba5461cb3..149a5bd6b88c 100644
--- a/arch/arm/crypto/Kconfig
+++ b/arch/arm/crypto/Kconfig
@@ -63,7 +63,7 @@ config CRYPTO_SHA512_ARM
using optimized ARM assembler and NEON, when available.
config CRYPTO_BLAKE2S_ARM
- tristate "BLAKE2s digest algorithm (ARM)"
+ bool "BLAKE2s digest algorithm (ARM)"
select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
help
BLAKE2s digest algorithm optimized with ARM scalar instructions. This
diff --git a/arch/arm/crypto/Makefile b/arch/arm/crypto/Makefile
index 0274f81cc8ea..971e74546fb1 100644
--- a/arch/arm/crypto/Makefile
+++ b/arch/arm/crypto/Makefile
@@ -9,8 +9,7 @@ obj-$(CONFIG_CRYPTO_SHA1_ARM) += sha1-arm.o
obj-$(CONFIG_CRYPTO_SHA1_ARM_NEON) += sha1-arm-neon.o
obj-$(CONFIG_CRYPTO_SHA256_ARM) += sha256-arm.o
obj-$(CONFIG_CRYPTO_SHA512_ARM) += sha512-arm.o
-obj-$(CONFIG_CRYPTO_BLAKE2S_ARM) += blake2s-arm.o
-obj-$(if $(CONFIG_CRYPTO_BLAKE2S_ARM),y) += libblake2s-arm.o
+obj-$(CONFIG_CRYPTO_BLAKE2S_ARM) += libblake2s-arm.o
obj-$(CONFIG_CRYPTO_BLAKE2B_NEON) += blake2b-neon.o
obj-$(CONFIG_CRYPTO_CHACHA20_NEON) += chacha-neon.o
obj-$(CONFIG_CRYPTO_POLY1305_ARM) += poly1305-arm.o
@@ -32,7 +31,6 @@ sha256-arm-neon-$(CONFIG_KERNEL_MODE_NEON) := sha256_neon_glue.o
sha256-arm-y := sha256-core.o sha256_glue.o $(sha256-arm-neon-y)
sha512-arm-neon-$(CONFIG_KERNEL_MODE_NEON) := sha512-neon-glue.o
sha512-arm-y := sha512-core.o sha512-glue.o $(sha512-arm-neon-y)
-blake2s-arm-y := blake2s-shash.o
libblake2s-arm-y:= blake2s-core.o blake2s-glue.o
blake2b-neon-y := blake2b-neon-core.o blake2b-neon-glue.o
sha1-arm-ce-y := sha1-ce-core.o sha1-ce-glue.o
diff --git a/arch/arm/crypto/blake2s-shash.c b/arch/arm/crypto/blake2s-shash.c
deleted file mode 100644
index 763c73beea2d..000000000000
--- a/arch/arm/crypto/blake2s-shash.c
+++ /dev/null
@@ -1,75 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*
- * BLAKE2s digest algorithm, ARM scalar implementation
- *
- * Copyright 2020 Google LLC
- */
-
-#include <crypto/internal/blake2s.h>
-#include <crypto/internal/hash.h>
-
-#include <linux/module.h>
-
-static int crypto_blake2s_update_arm(struct shash_desc *desc,
- const u8 *in, unsigned int inlen)
-{
- return crypto_blake2s_update(desc, in, inlen, false);
-}
-
-static int crypto_blake2s_final_arm(struct shash_desc *desc, u8 *out)
-{
- return crypto_blake2s_final(desc, out, false);
-}
-
-#define BLAKE2S_ALG(name, driver_name, digest_size) \
- { \
- .base.cra_name = name, \
- .base.cra_driver_name = driver_name, \
- .base.cra_priority = 200, \
- .base.cra_flags = CRYPTO_ALG_OPTIONAL_KEY, \
- .base.cra_blocksize = BLAKE2S_BLOCK_SIZE, \
- .base.cra_ctxsize = sizeof(struct blake2s_tfm_ctx), \
- .base.cra_module = THIS_MODULE, \
- .digestsize = digest_size, \
- .setkey = crypto_blake2s_setkey, \
- .init = crypto_blake2s_init, \
- .update = crypto_blake2s_update_arm, \
- .final = crypto_blake2s_final_arm, \
- .descsize = sizeof(struct blake2s_state), \
- }
-
-static struct shash_alg blake2s_arm_algs[] = {
- BLAKE2S_ALG("blake2s-128", "blake2s-128-arm", BLAKE2S_128_HASH_SIZE),
- BLAKE2S_ALG("blake2s-160", "blake2s-160-arm", BLAKE2S_160_HASH_SIZE),
- BLAKE2S_ALG("blake2s-224", "blake2s-224-arm", BLAKE2S_224_HASH_SIZE),
- BLAKE2S_ALG("blake2s-256", "blake2s-256-arm", BLAKE2S_256_HASH_SIZE),
-};
-
-static int __init blake2s_arm_mod_init(void)
-{
- return IS_REACHABLE(CONFIG_CRYPTO_HASH) ?
- crypto_register_shashes(blake2s_arm_algs,
- ARRAY_SIZE(blake2s_arm_algs)) : 0;
-}
-
-static void __exit blake2s_arm_mod_exit(void)
-{
- if (IS_REACHABLE(CONFIG_CRYPTO_HASH))
- crypto_unregister_shashes(blake2s_arm_algs,
- ARRAY_SIZE(blake2s_arm_algs));
-}
-
-module_init(blake2s_arm_mod_init);
-module_exit(blake2s_arm_mod_exit);
-
-MODULE_DESCRIPTION("BLAKE2s digest algorithm, ARM scalar implementation");
-MODULE_LICENSE("GPL");
-MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>");
-MODULE_ALIAS_CRYPTO("blake2s-128");
-MODULE_ALIAS_CRYPTO("blake2s-128-arm");
-MODULE_ALIAS_CRYPTO("blake2s-160");
-MODULE_ALIAS_CRYPTO("blake2s-160-arm");
-MODULE_ALIAS_CRYPTO("blake2s-224");
-MODULE_ALIAS_CRYPTO("blake2s-224-arm");
-MODULE_ALIAS_CRYPTO("blake2s-256");
-MODULE_ALIAS_CRYPTO("blake2s-256-arm");
diff --git a/arch/arm64/crypto/Kconfig b/arch/arm64/crypto/Kconfig
index ac85682c013c..60db5bb2ddda 100644
--- a/arch/arm64/crypto/Kconfig
+++ b/arch/arm64/crypto/Kconfig
@@ -71,6 +71,12 @@ config CRYPTO_GHASH_ARM64_CE
select CRYPTO_HASH
select CRYPTO_GF128MUL
select CRYPTO_LIB_AES
+ select CRYPTO_AEAD
+
+config CRYPTO_POLYVAL_ARM64_CE
+ tristate "POLYVAL using ARMv8 Crypto Extensions (for HCTR2)"
+ depends on KERNEL_MODE_NEON
+ select CRYPTO_POLYVAL
config CRYPTO_CRCT10DIF_ARM64_CE
tristate "CRCT10DIF digest algorithm using PMULL instructions"
@@ -96,13 +102,13 @@ config CRYPTO_AES_ARM64_CE_CCM
select CRYPTO_LIB_AES
config CRYPTO_AES_ARM64_CE_BLK
- tristate "AES in ECB/CBC/CTR/XTS modes using ARMv8 Crypto Extensions"
+ tristate "AES in ECB/CBC/CTR/XTS/XCTR modes using ARMv8 Crypto Extensions"
depends on KERNEL_MODE_NEON
select CRYPTO_SKCIPHER
select CRYPTO_AES_ARM64_CE
config CRYPTO_AES_ARM64_NEON_BLK
- tristate "AES in ECB/CBC/CTR/XTS modes using NEON instructions"
+ tristate "AES in ECB/CBC/CTR/XTS/XCTR modes using NEON instructions"
depends on KERNEL_MODE_NEON
select CRYPTO_SKCIPHER
select CRYPTO_LIB_AES
diff --git a/arch/arm64/crypto/Makefile b/arch/arm64/crypto/Makefile
index bea8995133b1..24bb0c4610de 100644
--- a/arch/arm64/crypto/Makefile
+++ b/arch/arm64/crypto/Makefile
@@ -32,6 +32,9 @@ sm4-neon-y := sm4-neon-glue.o sm4-neon-core.o
obj-$(CONFIG_CRYPTO_GHASH_ARM64_CE) += ghash-ce.o
ghash-ce-y := ghash-ce-glue.o ghash-ce-core.o
+obj-$(CONFIG_CRYPTO_POLYVAL_ARM64_CE) += polyval-ce.o
+polyval-ce-y := polyval-ce-glue.o polyval-ce-core.o
+
obj-$(CONFIG_CRYPTO_CRCT10DIF_ARM64_CE) += crct10dif-ce.o
crct10dif-ce-y := crct10dif-ce-core.o crct10dif-ce-glue.o
diff --git a/arch/arm64/crypto/aes-glue.c b/arch/arm64/crypto/aes-glue.c
index 561dd2332571..162787c7aa86 100644
--- a/arch/arm64/crypto/aes-glue.c
+++ b/arch/arm64/crypto/aes-glue.c
@@ -34,10 +34,11 @@
#define aes_essiv_cbc_encrypt ce_aes_essiv_cbc_encrypt
#define aes_essiv_cbc_decrypt ce_aes_essiv_cbc_decrypt
#define aes_ctr_encrypt ce_aes_ctr_encrypt
+#define aes_xctr_encrypt ce_aes_xctr_encrypt
#define aes_xts_encrypt ce_aes_xts_encrypt
#define aes_xts_decrypt ce_aes_xts_decrypt
#define aes_mac_update ce_aes_mac_update
-MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
+MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS/XCTR using ARMv8 Crypto Extensions");
#else
#define MODE "neon"
#define PRIO 200
@@ -50,16 +51,18 @@ MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
#define aes_essiv_cbc_encrypt neon_aes_essiv_cbc_encrypt
#define aes_essiv_cbc_decrypt neon_aes_essiv_cbc_decrypt
#define aes_ctr_encrypt neon_aes_ctr_encrypt
+#define aes_xctr_encrypt neon_aes_xctr_encrypt
#define aes_xts_encrypt neon_aes_xts_encrypt
#define aes_xts_decrypt neon_aes_xts_decrypt
#define aes_mac_update neon_aes_mac_update
-MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 NEON");
+MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS/XCTR using ARMv8 NEON");
#endif
#if defined(USE_V8_CRYPTO_EXTENSIONS) || !IS_ENABLED(CONFIG_CRYPTO_AES_ARM64_BS)
MODULE_ALIAS_CRYPTO("ecb(aes)");
MODULE_ALIAS_CRYPTO("cbc(aes)");
MODULE_ALIAS_CRYPTO("ctr(aes)");
MODULE_ALIAS_CRYPTO("xts(aes)");
+MODULE_ALIAS_CRYPTO("xctr(aes)");
#endif
MODULE_ALIAS_CRYPTO("cts(cbc(aes))");
MODULE_ALIAS_CRYPTO("essiv(cbc(aes),sha256)");
@@ -89,6 +92,9 @@ asmlinkage void aes_cbc_cts_decrypt(u8 out[], u8 const in[], u32 const rk[],
asmlinkage void aes_ctr_encrypt(u8 out[], u8 const in[], u32 const rk[],
int rounds, int bytes, u8 ctr[]);
+asmlinkage void aes_xctr_encrypt(u8 out[], u8 const in[], u32 const rk[],
+ int rounds, int bytes, u8 ctr[], int byte_ctr);
+
asmlinkage void aes_xts_encrypt(u8 out[], u8 const in[], u32 const rk1[],
int rounds, int bytes, u32 const rk2[], u8 iv[],
int first);
@@ -442,6 +448,52 @@ static int __maybe_unused essiv_cbc_decrypt(struct skcipher_request *req)
return err ?: cbc_decrypt_walk(req, &walk);
}
+static int __maybe_unused xctr_encrypt(struct skcipher_request *req)
+{
+ struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
+ struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
+ int err, rounds = 6 + ctx->key_length / 4;
+ struct skcipher_walk walk;
+ unsigned int byte_ctr = 0;
+
+ err = skcipher_walk_virt(&walk, req, false);
+
+ while (walk.nbytes > 0) {
+ const u8 *src = walk.src.virt.addr;
+ unsigned int nbytes = walk.nbytes;
+ u8 *dst = walk.dst.virt.addr;
+ u8 buf[AES_BLOCK_SIZE];
+
+ /*
+ * If given less than 16 bytes, we must copy the partial block
+ * into a temporary buffer of 16 bytes to avoid out of bounds
+ * reads and writes. Furthermore, this code is somewhat unusual
+ * in that it expects the end of the data to be at the end of
+ * the temporary buffer, rather than the start of the data at
+ * the start of the temporary buffer.
+ */
+ if (unlikely(nbytes < AES_BLOCK_SIZE))
+ src = dst = memcpy(buf + sizeof(buf) - nbytes,
+ src, nbytes);
+ else if (nbytes < walk.total)
+ nbytes &= ~(AES_BLOCK_SIZE - 1);
+
+ kernel_neon_begin();
+ aes_xctr_encrypt(dst, src, ctx->key_enc, rounds, nbytes,
+ walk.iv, byte_ctr);
+ kernel_neon_end();
+
+ if (unlikely(nbytes < AES_BLOCK_SIZE))
+ memcpy(walk.dst.virt.addr,
+ buf + sizeof(buf) - nbytes, nbytes);
+ byte_ctr += nbytes;
+
+ err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
+ }
+
+ return err;
+}
+
static int __maybe_unused ctr_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
@@ -457,6 +509,14 @@ static int __maybe_unused ctr_encrypt(struct skcipher_request *req)
u8 *dst = walk.dst.virt.addr;
u8 buf[AES_BLOCK_SIZE];
+ /*
+ * If given less than 16 bytes, we must copy the partial block
+ * into a temporary buffer of 16 bytes to avoid out of bounds
+ * reads and writes. Furthermore, this code is somewhat unusual
+ * in that it expects the end of the data to be at the end of
+ * the temporary buffer, rather than the start of the data at
+ * the start of the temporary buffer.
+ */
if (unlikely(nbytes < AES_BLOCK_SIZE))
src = dst = memcpy(buf + sizeof(buf) - nbytes,
src, nbytes);
@@ -671,6 +731,22 @@ static struct skcipher_alg aes_algs[] = { {
.decrypt = ctr_encrypt,
}, {
.base = {
+ .cra_name = "xctr(aes)",
+ .cra_driver_name = "xctr-aes-" MODE,
+ .cra_priority = PRIO,
+ .cra_blocksize = 1,
+ .cra_ctxsize = sizeof(struct crypto_aes_ctx),
+ .cra_module = THIS_MODULE,
+ },
+ .min_keysize = AES_MIN_KEY_SIZE,
+ .max_keysize = AES_MAX_KEY_SIZE,
+ .ivsize = AES_BLOCK_SIZE,
+ .chunksize = AES_BLOCK_SIZE,
+ .setkey = skcipher_aes_setkey,
+ .encrypt = xctr_encrypt,
+ .decrypt = xctr_encrypt,
+}, {
+ .base = {
.cra_name = "xts(aes)",
.cra_driver_name = "xts-aes-" MODE,
.cra_priority = PRIO,
diff --git a/arch/arm64/crypto/aes-modes.S b/arch/arm64/crypto/aes-modes.S
index dc35eb0245c5..5abc834271f4 100644
--- a/arch/arm64/crypto/aes-modes.S
+++ b/arch/arm64/crypto/aes-modes.S
@@ -318,127 +318,211 @@ AES_FUNC_END(aes_cbc_cts_decrypt)
.byte 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
.previous
-
/*
- * aes_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds,
- * int bytes, u8 ctr[])
+ * This macro generates the code for CTR and XCTR mode.
*/
+.macro ctr_encrypt xctr
+ // Arguments
+ OUT .req x0
+ IN .req x1
+ KEY .req x2
+ ROUNDS_W .req w3
+ BYTES_W .req w4
+ IV .req x5
+ BYTE_CTR_W .req w6 // XCTR only
+ // Intermediate values
+ CTR_W .req w11 // XCTR only
+ CTR .req x11 // XCTR only
+ IV_PART .req x12
+ BLOCKS .req x13
+ BLOCKS_W .req w13
-AES_FUNC_START(aes_ctr_encrypt)
stp x29, x30, [sp, #-16]!
mov x29, sp
- enc_prepare w3, x2, x12
- ld1 {vctr.16b}, [x5]
+ enc_prepare ROUNDS_W, KEY, IV_PART
+ ld1 {vctr.16b}, [IV]
- umov x12, vctr.d[1] /* keep swabbed ctr in reg */
- rev x12, x12
-
-.LctrloopNx:
- add w7, w4, #15
- sub w4, w4, #MAX_STRIDE << 4
- lsr w7, w7, #4
+ /*
+ * Keep 64 bits of the IV in a register. For CTR mode this lets us
+ * easily increment the IV. For XCTR mode this lets us efficiently XOR
+ * the 64-bit counter with the IV.
+ */
+ .if \xctr
+ umov IV_PART, vctr.d[0]
+ lsr CTR_W, BYTE_CTR_W, #4
+ .else
+ umov IV_PART, vctr.d[1]
+ rev IV_PART, IV_PART
+ .endif
+
+.LctrloopNx\xctr:
+ add BLOCKS_W, BYTES_W, #15
+ sub BYTES_W, BYTES_W, #MAX_STRIDE << 4
+ lsr BLOCKS_W, BLOCKS_W, #4
mov w8, #MAX_STRIDE
- cmp w7, w8
- csel w7, w7, w8, lt
- adds x12, x12, x7
+ cmp BLOCKS_W, w8
+ csel BLOCKS_W, BLOCKS_W, w8, lt
+ /*
+ * Set up the counter values in v0-v{MAX_STRIDE-1}.
+ *
+ * If we are encrypting less than MAX_STRIDE blocks, the tail block
+ * handling code expects the last keystream block to be in
+ * v{MAX_STRIDE-1}. For example: if encrypting two blocks with
+ * MAX_STRIDE=5, then v3 and v4 should have the next two counter blocks.
+ */
+ .if \xctr
+ add CTR, CTR, BLOCKS
+ .else
+ adds IV_PART, IV_PART, BLOCKS
+ .endif
mov v0.16b, vctr.16b
mov v1.16b, vctr.16b
mov v2.16b, vctr.16b
mov v3.16b, vctr.16b
ST5( mov v4.16b, vctr.16b )
- bcs 0f
-
- .subsection 1
- /* apply carry to outgoing counter */
-0: umov x8, vctr.d[0]
- rev x8, x8
- add x8, x8, #1
- rev x8, x8
- ins vctr.d[0], x8
-
- /* apply carry to N counter blocks for N := x12 */
- cbz x12, 2f
- adr x16, 1f
- sub x16, x16, x12, lsl #3
- br x16
- bti c
- mov v0.d[0], vctr.d[0]
- bti c
- mov v1.d[0], vctr.d[0]
- bti c
- mov v2.d[0], vctr.d[0]
- bti c
- mov v3.d[0], vctr.d[0]
-ST5( bti c )
-ST5( mov v4.d[0], vctr.d[0] )
-1: b 2f
- .previous
+ .if \xctr
+ sub x6, CTR, #MAX_STRIDE - 1
+ sub x7, CTR, #MAX_STRIDE - 2
+ sub x8, CTR, #MAX_STRIDE - 3
+ sub x9, CTR, #MAX_STRIDE - 4
+ST5( sub x10, CTR, #MAX_STRIDE - 5 )
+ eor x6, x6, IV_PART
+ eor x7, x7, IV_PART
+ eor x8, x8, IV_PART
+ eor x9, x9, IV_PART
+ST5( eor x10, x10, IV_PART )
+ mov v0.d[0], x6
+ mov v1.d[0], x7
+ mov v2.d[0], x8
+ mov v3.d[0], x9
+ST5( mov v4.d[0], x10 )
+ .else
+ bcs 0f
+ .subsection 1
+ /*
+ * This subsection handles carries.
+ *
+ * Conditional branching here is allowed with respect to time
+ * invariance since the branches are dependent on the IV instead
+ * of the plaintext or key. This code is rarely executed in
+ * practice anyway.
+ */
+
+ /* Apply carry to outgoing counter. */
+0: umov x8, vctr.d[0]
+ rev x8, x8
+ add x8, x8, #1
+ rev x8, x8
+ ins vctr.d[0], x8
+
+ /*
+ * Apply carry to counter blocks if needed.
+ *
+ * Since the carry flag was set, we know 0 <= IV_PART <
+ * MAX_STRIDE. Using the value of IV_PART we can determine how
+ * many counter blocks need to be updated.
+ */
+ cbz IV_PART, 2f
+ adr x16, 1f
+ sub x16, x16, IV_PART, lsl #3
+ br x16
+ bti c
+ mov v0.d[0], vctr.d[0]
+ bti c
+ mov v1.d[0], vctr.d[0]
+ bti c
+ mov v2.d[0], vctr.d[0]
+ bti c
+ mov v3.d[0], vctr.d[0]
+ST5( bti c )
+ST5( mov v4.d[0], vctr.d[0] )
+1: b 2f
+ .previous
+
+2: rev x7, IV_PART
+ ins vctr.d[1], x7
+ sub x7, IV_PART, #MAX_STRIDE - 1
+ sub x8, IV_PART, #MAX_STRIDE - 2
+ sub x9, IV_PART, #MAX_STRIDE - 3
+ rev x7, x7
+ rev x8, x8
+ mov v1.d[1], x7
+ rev x9, x9
+ST5( sub x10, IV_PART, #MAX_STRIDE - 4 )
+ mov v2.d[1], x8
+ST5( rev x10, x10 )
+ mov v3.d[1], x9
+ST5( mov v4.d[1], x10 )
+ .endif
-2: rev x7, x12
- ins vctr.d[1], x7
- sub x7, x12, #MAX_STRIDE - 1
- sub x8, x12, #MAX_STRIDE - 2
- sub x9, x12, #MAX_STRIDE - 3
- rev x7, x7
- rev x8, x8
- mov v1.d[1], x7
- rev x9, x9
-ST5( sub x10, x12, #MAX_STRIDE - 4 )
- mov v2.d[1], x8
-ST5( rev x10, x10 )
- mov v3.d[1], x9
-ST5( mov v4.d[1], x10 )
- tbnz w4, #31, .Lctrtail
- ld1 {v5.16b-v7.16b}, [x1], #48
+ /*
+ * If there are at least MAX_STRIDE blocks left, XOR the data with
+ * keystream and store. Otherwise jump to tail handling.
+ */
+ tbnz BYTES_W, #31, .Lctrtail\xctr
+ ld1 {v5.16b-v7.16b}, [IN], #48
ST4( bl aes_encrypt_block4x )
ST5( bl aes_encrypt_block5x )
eor v0.16b, v5.16b, v0.16b
-ST4( ld1 {v5.16b}, [x1], #16 )
+ST4( ld1 {v5.16b}, [IN], #16 )
eor v1.16b, v6.16b, v1.16b
-ST5( ld1 {v5.16b-v6.16b}, [x1], #32 )
+ST5( ld1 {v5.16b-v6.16b}, [IN], #32 )
eor v2.16b, v7.16b, v2.16b
eor v3.16b, v5.16b, v3.16b
ST5( eor v4.16b, v6.16b, v4.16b )
- st1 {v0.16b-v3.16b}, [x0], #64
-ST5( st1 {v4.16b}, [x0], #16 )
- cbz w4, .Lctrout
- b .LctrloopNx
-
-.Lctrout:
- st1 {vctr.16b}, [x5] /* return next CTR value */
+ st1 {v0.16b-v3.16b}, [OUT], #64
+ST5( st1 {v4.16b}, [OUT], #16 )
+ cbz BYTES_W, .Lctrout\xctr
+ b .LctrloopNx\xctr
+
+.Lctrout\xctr:
+ .if !\xctr
+ st1 {vctr.16b}, [IV] /* return next CTR value */
+ .endif
ldp x29, x30, [sp], #16
ret
-.Lctrtail:
- /* XOR up to MAX_STRIDE * 16 - 1 bytes of in/output with v0 ... v3/v4 */
+.Lctrtail\xctr:
+ /*
+ * Handle up to MAX_STRIDE * 16 - 1 bytes of plaintext
+ *
+ * This code expects the last keystream block to be in v{MAX_STRIDE-1}.
+ * For example: if encrypting two blocks with MAX_STRIDE=5, then v3 and
+ * v4 should have the next two counter blocks.
+ *
+ * This allows us to store the ciphertext by writing to overlapping
+ * regions of memory. Any invalid ciphertext blocks get overwritten by
+ * correctly computed blocks. This approach greatly simplifies the
+ * logic for storing the ciphertext.
+ */
mov x16, #16
- ands x6, x4, #0xf
- csel x13, x6, x16, ne
+ ands w7, BYTES_W, #0xf
+ csel x13, x7, x16, ne
-ST5( cmp w4, #64 - (MAX_STRIDE << 4) )
+ST5( cmp BYTES_W, #64 - (MAX_STRIDE << 4))
ST5( csel x14, x16, xzr, gt )
- cmp w4, #48 - (MAX_STRIDE << 4)
+ cmp BYTES_W, #48 - (MAX_STRIDE << 4)
csel x15, x16, xzr, gt
- cmp w4, #32 - (MAX_STRIDE << 4)
+ cmp BYTES_W, #32 - (MAX_STRIDE << 4)
csel x16, x16, xzr, gt
- cmp w4, #16 - (MAX_STRIDE << 4)
+ cmp BYTES_W, #16 - (MAX_STRIDE << 4)
- adr_l x12, .Lcts_permute_table
- add x12, x12, x13
- ble .Lctrtail1x
+ adr_l x9, .Lcts_permute_table
+ add x9, x9, x13
+ ble .Lctrtail1x\xctr
-ST5( ld1 {v5.16b}, [x1], x14 )
- ld1 {v6.16b}, [x1], x15
- ld1 {v7.16b}, [x1], x16
+ST5( ld1 {v5.16b}, [IN], x14 )
+ ld1 {v6.16b}, [IN], x15
+ ld1 {v7.16b}, [IN], x16
ST4( bl aes_encrypt_block4x )
ST5( bl aes_encrypt_block5x )
- ld1 {v8.16b}, [x1], x13
- ld1 {v9.16b}, [x1]
- ld1 {v10.16b}, [x12]
+ ld1 {v8.16b}, [IN], x13
+ ld1 {v9.16b}, [IN]
+ ld1 {v10.16b}, [x9]
ST4( eor v6.16b, v6.16b, v0.16b )
ST4( eor v7.16b, v7.16b, v1.16b )
@@ -453,32 +537,91 @@ ST5( eor v7.16b, v7.16b, v2.16b )
ST5( eor v8.16b, v8.16b, v3.16b )
ST5( eor v9.16b, v9.16b, v4.16b )
-ST5( st1 {v5.16b}, [x0], x14 )
- st1 {v6.16b}, [x0], x15
- st1 {v7.16b}, [x0], x16
- add x13, x13, x0
+ST5( st1 {v5.16b}, [OUT], x14 )
+ st1 {v6.16b}, [OUT], x15
+ st1 {v7.16b}, [OUT], x16
+ add x13, x13, OUT
st1 {v9.16b}, [x13] // overlapping stores
- st1 {v8.16b}, [x0]
- b .Lctrout
-
-.Lctrtail1x:
- sub x7, x6, #16
- csel x6, x6, x7, eq
- add x1, x1, x6
- add x0, x0, x6
- ld1 {v5.16b}, [x1]
- ld1 {v6.16b}, [x0]
+ st1 {v8.16b}, [OUT]
+ b .Lctrout\xctr
+
+.Lctrtail1x\xctr:
+ /*
+ * Handle <= 16 bytes of plaintext
+ *
+ * This code always reads and writes 16 bytes. To avoid out of bounds
+ * accesses, XCTR and CTR modes must use a temporary buffer when
+ * encrypting/decrypting less than 16 bytes.
+ *
+ * This code is unusual in that it loads the input and stores the output
+ * relative to the end of the buffers rather than relative to the start.
+ * This causes unusual behaviour when encrypting/decrypting less than 16
+ * bytes; the end of the data is expected to be at the end of the
+ * temporary buffer rather than the start of the data being at the start
+ * of the temporary buffer.
+ */
+ sub x8, x7, #16
+ csel x7, x7, x8, eq
+ add IN, IN, x7
+ add OUT, OUT, x7
+ ld1 {v5.16b}, [IN]
+ ld1 {v6.16b}, [OUT]
ST5( mov v3.16b, v4.16b )
- encrypt_block v3, w3, x2, x8, w7
- ld1 {v10.16b-v11.16b}, [x12]
+ encrypt_block v3, ROUNDS_W, KEY, x8, w7
+ ld1 {v10.16b-v11.16b}, [x9]
tbl v3.16b, {v3.16b}, v10.16b
sshr v11.16b, v11.16b, #7
eor v5.16b, v5.16b, v3.16b
bif v5.16b, v6.16b, v11.16b
- st1 {v5.16b}, [x0]
- b .Lctrout
+ st1 {v5.16b}, [OUT]
+ b .Lctrout\xctr
+
+ // Arguments
+ .unreq OUT
+ .unreq IN
+ .unreq KEY
+ .unreq ROUNDS_W
+ .unreq BYTES_W
+ .unreq IV
+ .unreq BYTE_CTR_W // XCTR only
+ // Intermediate values
+ .unreq CTR_W // XCTR only
+ .unreq CTR // XCTR only
+ .unreq IV_PART
+ .unreq BLOCKS
+ .unreq BLOCKS_W
+.endm
+
+ /*
+ * aes_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds,
+ * int bytes, u8 ctr[])
+ *
+ * The input and output buffers must always be at least 16 bytes even if
+ * encrypting/decrypting less than 16 bytes. Otherwise out of bounds
+ * accesses will occur. The data to be encrypted/decrypted is expected
+ * to be at the end of this 16-byte temporary buffer rather than the
+ * start.
+ */
+
+AES_FUNC_START(aes_ctr_encrypt)
+ ctr_encrypt 0
AES_FUNC_END(aes_ctr_encrypt)
+ /*
+ * aes_xctr_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds,
+ * int bytes, u8 const iv[], int byte_ctr)
+ *
+ * The input and output buffers must always be at least 16 bytes even if
+ * encrypting/decrypting less than 16 bytes. Otherwise out of bounds
+ * accesses will occur. The data to be encrypted/decrypted is expected
+ * to be at the end of this 16-byte temporary buffer rather than the
+ * start.
+ */
+
+AES_FUNC_START(aes_xctr_encrypt)
+ ctr_encrypt 1
+AES_FUNC_END(aes_xctr_encrypt)
+
/*
* aes_xts_encrypt(u8 out[], u8 const in[], u8 const rk1[], int rounds,
diff --git a/arch/arm64/crypto/aes-neon.S b/arch/arm64/crypto/aes-neon.S
index e47d3ec2cfb4..9de7fbc797af 100644
--- a/arch/arm64/crypto/aes-neon.S
+++ b/arch/arm64/crypto/aes-neon.S
@@ -66,7 +66,7 @@
prepare crypto_aes_inv_sbox, .LReverse_ShiftRows, \temp
.endm
- /* apply SubBytes transformation using the the preloaded Sbox */
+ /* apply SubBytes transformation using the preloaded Sbox */
.macro sub_bytes, in
sub v9.16b, \in\().16b, v15.16b
tbl \in\().16b, {v16.16b-v19.16b}, \in\().16b
diff --git a/arch/arm64/crypto/poly1305-glue.c b/arch/arm64/crypto/poly1305-glue.c
index 9c3d86e397bf..1fae18ba11ed 100644
--- a/arch/arm64/crypto/poly1305-glue.c
+++ b/arch/arm64/crypto/poly1305-glue.c
@@ -52,7 +52,7 @@ static void neon_poly1305_blocks(struct poly1305_desc_ctx *dctx, const u8 *src,
{
if (unlikely(!dctx->sset)) {
if (!dctx->rset) {
- poly1305_init_arch(dctx, src);
+ poly1305_init_arm64(&dctx->h, src);
src += POLY1305_BLOCK_SIZE;
len -= POLY1305_BLOCK_SIZE;
dctx->rset = 1;
diff --git a/arch/arm64/crypto/polyval-ce-core.S b/arch/arm64/crypto/polyval-ce-core.S
new file mode 100644
index 000000000000..b5326540d2e3
--- /dev/null
+++ b/arch/arm64/crypto/polyval-ce-core.S
@@ -0,0 +1,361 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Implementation of POLYVAL using ARMv8 Crypto Extensions.
+ *
+ * Copyright 2021 Google LLC
+ */
+/*
+ * This is an efficient implementation of POLYVAL using ARMv8 Crypto Extensions
+ * It works on 8 blocks at a time, by precomputing the first 8 keys powers h^8,
+ * ..., h^1 in the POLYVAL finite field. This precomputation allows us to split
+ * finite field multiplication into two steps.
+ *
+ * In the first step, we consider h^i, m_i as normal polynomials of degree less
+ * than 128. We then compute p(x) = h^8m_0 + ... + h^1m_7 where multiplication
+ * is simply polynomial multiplication.
+ *
+ * In the second step, we compute the reduction of p(x) modulo the finite field
+ * modulus g(x) = x^128 + x^127 + x^126 + x^121 + 1.
+ *
+ * This two step process is equivalent to computing h^8m_0 + ... + h^1m_7 where
+ * multiplication is finite field multiplication. The advantage is that the
+ * two-step process only requires 1 finite field reduction for every 8
+ * polynomial multiplications. Further parallelism is gained by interleaving the
+ * multiplications and polynomial reductions.
+ */
+
+#include <linux/linkage.h>
+#define STRIDE_BLOCKS 8
+
+KEY_POWERS .req x0
+MSG .req x1
+BLOCKS_LEFT .req x2
+ACCUMULATOR .req x3
+KEY_START .req x10
+EXTRA_BYTES .req x11
+TMP .req x13
+
+M0 .req v0
+M1 .req v1
+M2 .req v2
+M3 .req v3
+M4 .req v4
+M5 .req v5
+M6 .req v6
+M7 .req v7
+KEY8 .req v8
+KEY7 .req v9
+KEY6 .req v10
+KEY5 .req v11
+KEY4 .req v12
+KEY3 .req v13
+KEY2 .req v14
+KEY1 .req v15
+PL .req v16
+PH .req v17
+TMP_V .req v18
+LO .req v20
+MI .req v21
+HI .req v22
+SUM .req v23
+GSTAR .req v24
+
+ .text
+
+ .arch armv8-a+crypto
+ .align 4
+
+.Lgstar:
+ .quad 0xc200000000000000, 0xc200000000000000
+
+/*
+ * Computes the product of two 128-bit polynomials in X and Y and XORs the
+ * components of the 256-bit product into LO, MI, HI.
+ *
+ * Given:
+ * X = [X_1 : X_0]
+ * Y = [Y_1 : Y_0]
+ *
+ * We compute:
+ * LO += X_0 * Y_0
+ * MI += (X_0 + X_1) * (Y_0 + Y_1)
+ * HI += X_1 * Y_1
+ *
+ * Later, the 256-bit result can be extracted as:
+ * [HI_1 : HI_0 + HI_1 + MI_1 + LO_1 : LO_1 + HI_0 + MI_0 + LO_0 : LO_0]
+ * This step is done when computing the polynomial reduction for efficiency
+ * reasons.
+ *
+ * Karatsuba multiplication is used instead of Schoolbook multiplication because
+ * it was found to be slightly faster on ARM64 CPUs.
+ *
+ */
+.macro karatsuba1 X Y
+ X .req \X
+ Y .req \Y
+ ext v25.16b, X.16b, X.16b, #8
+ ext v26.16b, Y.16b, Y.16b, #8
+ eor v25.16b, v25.16b, X.16b
+ eor v26.16b, v26.16b, Y.16b
+ pmull2 v28.1q, X.2d, Y.2d
+ pmull v29.1q, X.1d, Y.1d
+ pmull v27.1q, v25.1d, v26.1d
+ eor HI.16b, HI.16b, v28.16b
+ eor LO.16b, LO.16b, v29.16b
+ eor MI.16b, MI.16b, v27.16b
+ .unreq X
+ .unreq Y
+.endm
+
+/*
+ * Same as karatsuba1, except overwrites HI, LO, MI rather than XORing into
+ * them.
+ */
+.macro karatsuba1_store X Y
+ X .req \X
+ Y .req \Y
+ ext v25.16b, X.16b, X.16b, #8
+ ext v26.16b, Y.16b, Y.16b, #8
+ eor v25.16b, v25.16b, X.16b
+ eor v26.16b, v26.16b, Y.16b
+ pmull2 HI.1q, X.2d, Y.2d
+ pmull LO.1q, X.1d, Y.1d
+ pmull MI.1q, v25.1d, v26.1d
+ .unreq X
+ .unreq Y
+.endm
+
+/*
+ * Computes the 256-bit polynomial represented by LO, HI, MI. Stores
+ * the result in PL, PH.
+ * [PH : PL] =
+ * [HI_1 : HI_1 + HI_0 + MI_1 + LO_1 : HI_0 + MI_0 + LO_1 + LO_0 : LO_0]
+ */
+.macro karatsuba2
+ // v4 = [HI_1 + MI_1 : HI_0 + MI_0]
+ eor v4.16b, HI.16b, MI.16b
+ // v4 = [HI_1 + MI_1 + LO_1 : HI_0 + MI_0 + LO_0]
+ eor v4.16b, v4.16b, LO.16b
+ // v5 = [HI_0 : LO_1]
+ ext v5.16b, LO.16b, HI.16b, #8
+ // v4 = [HI_1 + HI_0 + MI_1 + LO_1 : HI_0 + MI_0 + LO_1 + LO_0]
+ eor v4.16b, v4.16b, v5.16b
+ // HI = [HI_0 : HI_1]
+ ext HI.16b, HI.16b, HI.16b, #8
+ // LO = [LO_0 : LO_1]
+ ext LO.16b, LO.16b, LO.16b, #8
+ // PH = [HI_1 : HI_1 + HI_0 + MI_1 + LO_1]
+ ext PH.16b, v4.16b, HI.16b, #8
+ // PL = [HI_0 + MI_0 + LO_1 + LO_0 : LO_0]
+ ext PL.16b, LO.16b, v4.16b, #8
+.endm
+
+/*
+ * Computes the 128-bit reduction of PH : PL. Stores the result in dest.
+ *
+ * This macro computes p(x) mod g(x) where p(x) is in montgomery form and g(x) =
+ * x^128 + x^127 + x^126 + x^121 + 1.
+ *
+ * We have a 256-bit polynomial PH : PL = P_3 : P_2 : P_1 : P_0 that is the
+ * product of two 128-bit polynomials in Montgomery form. We need to reduce it
+ * mod g(x). Also, since polynomials in Montgomery form have an "extra" factor
+ * of x^128, this product has two extra factors of x^128. To get it back into
+ * Montgomery form, we need to remove one of these factors by dividing by x^128.
+ *
+ * To accomplish both of these goals, we add multiples of g(x) that cancel out
+ * the low 128 bits P_1 : P_0, leaving just the high 128 bits. Since the low
+ * bits are zero, the polynomial division by x^128 can be done by right
+ * shifting.
+ *
+ * Since the only nonzero term in the low 64 bits of g(x) is the constant term,
+ * the multiple of g(x) needed to cancel out P_0 is P_0 * g(x). The CPU can
+ * only do 64x64 bit multiplications, so split P_0 * g(x) into x^128 * P_0 +
+ * x^64 * g*(x) * P_0 + P_0, where g*(x) is bits 64-127 of g(x). Adding this to
+ * the original polynomial gives P_3 : P_2 + P_0 + T_1 : P_1 + T_0 : 0, where T
+ * = T_1 : T_0 = g*(x) * P_0. Thus, bits 0-63 got "folded" into bits 64-191.
+ *
+ * Repeating this same process on the next 64 bits "folds" bits 64-127 into bits
+ * 128-255, giving the answer in bits 128-255. This time, we need to cancel P_1
+ * + T_0 in bits 64-127. The multiple of g(x) required is (P_1 + T_0) * g(x) *
+ * x^64. Adding this to our previous computation gives P_3 + P_1 + T_0 + V_1 :
+ * P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_1 : V_0 = g*(x) * (P_1 + T_0).
+ *
+ * So our final computation is:
+ * T = T_1 : T_0 = g*(x) * P_0
+ * V = V_1 : V_0 = g*(x) * (P_1 + T_0)
+ * p(x) / x^{128} mod g(x) = P_3 + P_1 + T_0 + V_1 : P_2 + P_0 + T_1 + V_0
+ *
+ * The implementation below saves a XOR instruction by computing P_1 + T_0 : P_0
+ * + T_1 and XORing into dest, rather than separately XORing P_1 : P_0 and T_0 :
+ * T_1 into dest. This allows us to reuse P_1 + T_0 when computing V.
+ */
+.macro montgomery_reduction dest
+ DEST .req \dest
+ // TMP_V = T_1 : T_0 = P_0 * g*(x)
+ pmull TMP_V.1q, PL.1d, GSTAR.1d
+ // TMP_V = T_0 : T_1
+ ext TMP_V.16b, TMP_V.16b, TMP_V.16b, #8
+ // TMP_V = P_1 + T_0 : P_0 + T_1
+ eor TMP_V.16b, PL.16b, TMP_V.16b
+ // PH = P_3 + P_1 + T_0 : P_2 + P_0 + T_1
+ eor PH.16b, PH.16b, TMP_V.16b
+ // TMP_V = V_1 : V_0 = (P_1 + T_0) * g*(x)
+ pmull2 TMP_V.1q, TMP_V.2d, GSTAR.2d
+ eor DEST.16b, PH.16b, TMP_V.16b
+ .unreq DEST
+.endm
+
+/*
+ * Compute Polyval on 8 blocks.
+ *
+ * If reduce is set, also computes the montgomery reduction of the
+ * previous full_stride call and XORs with the first message block.
+ * (m_0 + REDUCE(PL, PH))h^8 + ... + m_7h^1.
+ * I.e., the first multiplication uses m_0 + REDUCE(PL, PH) instead of m_0.
+ *
+ * Sets PL, PH.
+ */
+.macro full_stride reduce
+ eor LO.16b, LO.16b, LO.16b
+ eor MI.16b, MI.16b, MI.16b
+ eor HI.16b, HI.16b, HI.16b
+
+ ld1 {M0.16b, M1.16b, M2.16b, M3.16b}, [MSG], #64
+ ld1 {M4.16b, M5.16b, M6.16b, M7.16b}, [MSG], #64
+
+ karatsuba1 M7 KEY1
+ .if \reduce
+ pmull TMP_V.1q, PL.1d, GSTAR.1d
+ .endif
+
+ karatsuba1 M6 KEY2
+ .if \reduce
+ ext TMP_V.16b, TMP_V.16b, TMP_V.16b, #8
+ .endif
+
+ karatsuba1 M5 KEY3
+ .if \reduce
+ eor TMP_V.16b, PL.16b, TMP_V.16b
+ .endif
+
+ karatsuba1 M4 KEY4
+ .if \reduce
+ eor PH.16b, PH.16b, TMP_V.16b
+ .endif
+
+ karatsuba1 M3 KEY5
+ .if \reduce
+ pmull2 TMP_V.1q, TMP_V.2d, GSTAR.2d
+ .endif
+
+ karatsuba1 M2 KEY6
+ .if \reduce
+ eor SUM.16b, PH.16b, TMP_V.16b
+ .endif
+
+ karatsuba1 M1 KEY7
+ eor M0.16b, M0.16b, SUM.16b
+
+ karatsuba1 M0 KEY8
+ karatsuba2
+.endm
+
+/*
+ * Handle any extra blocks after full_stride loop.
+ */
+.macro partial_stride
+ add KEY_POWERS, KEY_START, #(STRIDE_BLOCKS << 4)
+ sub KEY_POWERS, KEY_POWERS, BLOCKS_LEFT, lsl #4
+ ld1 {KEY1.16b}, [KEY_POWERS], #16
+
+ ld1 {TMP_V.16b}, [MSG], #16
+ eor SUM.16b, SUM.16b, TMP_V.16b
+ karatsuba1_store KEY1 SUM
+ sub BLOCKS_LEFT, BLOCKS_LEFT, #1
+
+ tst BLOCKS_LEFT, #4
+ beq .Lpartial4BlocksDone
+ ld1 {M0.16b, M1.16b, M2.16b, M3.16b}, [MSG], #64
+ ld1 {KEY8.16b, KEY7.16b, KEY6.16b, KEY5.16b}, [KEY_POWERS], #64
+ karatsuba1 M0 KEY8
+ karatsuba1 M1 KEY7
+ karatsuba1 M2 KEY6
+ karatsuba1 M3 KEY5
+.Lpartial4BlocksDone:
+ tst BLOCKS_LEFT, #2
+ beq .Lpartial2BlocksDone
+ ld1 {M0.16b, M1.16b}, [MSG], #32
+ ld1 {KEY8.16b, KEY7.16b}, [KEY_POWERS], #32
+ karatsuba1 M0 KEY8
+ karatsuba1 M1 KEY7
+.Lpartial2BlocksDone:
+ tst BLOCKS_LEFT, #1
+ beq .LpartialDone
+ ld1 {M0.16b}, [MSG], #16
+ ld1 {KEY8.16b}, [KEY_POWERS], #16
+ karatsuba1 M0 KEY8
+.LpartialDone:
+ karatsuba2
+ montgomery_reduction SUM
+.endm
+
+/*
+ * Perform montgomery multiplication in GF(2^128) and store result in op1.
+ *
+ * Computes op1*op2*x^{-128} mod x^128 + x^127 + x^126 + x^121 + 1
+ * If op1, op2 are in montgomery form, this computes the montgomery
+ * form of op1*op2.
+ *
+ * void pmull_polyval_mul(u8 *op1, const u8 *op2);
+ */
+SYM_FUNC_START(pmull_polyval_mul)
+ adr TMP, .Lgstar
+ ld1 {GSTAR.2d}, [TMP]
+ ld1 {v0.16b}, [x0]
+ ld1 {v1.16b}, [x1]
+ karatsuba1_store v0 v1
+ karatsuba2
+ montgomery_reduction SUM
+ st1 {SUM.16b}, [x0]
+ ret
+SYM_FUNC_END(pmull_polyval_mul)
+
+/*
+ * Perform polynomial evaluation as specified by POLYVAL. This computes:
+ * h^n * accumulator + h^n * m_0 + ... + h^1 * m_{n-1}
+ * where n=nblocks, h is the hash key, and m_i are the message blocks.
+ *
+ * x0 - pointer to precomputed key powers h^8 ... h^1
+ * x1 - pointer to message blocks
+ * x2 - number of blocks to hash
+ * x3 - pointer to accumulator
+ *
+ * void pmull_polyval_update(const struct polyval_ctx *ctx, const u8 *in,
+ * size_t nblocks, u8 *accumulator);
+ */
+SYM_FUNC_START(pmull_polyval_update)
+ adr TMP, .Lgstar
+ mov KEY_START, KEY_POWERS
+ ld1 {GSTAR.2d}, [TMP]
+ ld1 {SUM.16b}, [ACCUMULATOR]
+ subs BLOCKS_LEFT, BLOCKS_LEFT, #STRIDE_BLOCKS
+ blt .LstrideLoopExit
+ ld1 {KEY8.16b, KEY7.16b, KEY6.16b, KEY5.16b}, [KEY_POWERS], #64
+ ld1 {KEY4.16b, KEY3.16b, KEY2.16b, KEY1.16b}, [KEY_POWERS], #64
+ full_stride 0
+ subs BLOCKS_LEFT, BLOCKS_LEFT, #STRIDE_BLOCKS
+ blt .LstrideLoopExitReduce
+.LstrideLoop:
+ full_stride 1
+ subs BLOCKS_LEFT, BLOCKS_LEFT, #STRIDE_BLOCKS
+ bge .LstrideLoop
+.LstrideLoopExitReduce:
+ montgomery_reduction SUM
+.LstrideLoopExit:
+ adds BLOCKS_LEFT, BLOCKS_LEFT, #STRIDE_BLOCKS
+ beq .LskipPartial
+ partial_stride
+.LskipPartial:
+ st1 {SUM.16b}, [ACCUMULATOR]
+ ret
+SYM_FUNC_END(pmull_polyval_update)
diff --git a/arch/arm64/crypto/polyval-ce-glue.c b/arch/arm64/crypto/polyval-ce-glue.c
new file mode 100644
index 000000000000..0a3b5718df85
--- /dev/null
+++ b/arch/arm64/crypto/polyval-ce-glue.c
@@ -0,0 +1,191 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Glue code for POLYVAL using ARMv8 Crypto Extensions
+ *
+ * Copyright (c) 2007 Nokia Siemens Networks - Mikko Herranen <mh1@iki.fi>
+ * Copyright (c) 2009 Intel Corp.
+ * Author: Huang Ying <ying.huang@intel.com>
+ * Copyright 2021 Google LLC
+ */
+
+/*
+ * Glue code based on ghash-clmulni-intel_glue.c.
+ *
+ * This implementation of POLYVAL uses montgomery multiplication accelerated by
+ * ARMv8 Crypto Extensions instructions to implement the finite field operations.
+ */
+
+#include <crypto/algapi.h>
+#include <crypto/internal/hash.h>
+#include <crypto/internal/simd.h>
+#include <crypto/polyval.h>
+#include <linux/crypto.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/cpufeature.h>
+#include <asm/neon.h>
+#include <asm/simd.h>
+
+#define NUM_KEY_POWERS 8
+
+struct polyval_tfm_ctx {
+ /*
+ * These powers must be in the order h^8, ..., h^1.
+ */
+ u8 key_powers[NUM_KEY_POWERS][POLYVAL_BLOCK_SIZE];
+};
+
+struct polyval_desc_ctx {
+ u8 buffer[POLYVAL_BLOCK_SIZE];
+ u32 bytes;
+};
+
+asmlinkage void pmull_polyval_update(const struct polyval_tfm_ctx *keys,
+ const u8 *in, size_t nblocks, u8 *accumulator);
+asmlinkage void pmull_polyval_mul(u8 *op1, const u8 *op2);
+
+static void internal_polyval_update(const struct polyval_tfm_ctx *keys,
+ const u8 *in, size_t nblocks, u8 *accumulator)
+{
+ if (likely(crypto_simd_usable())) {
+ kernel_neon_begin();
+ pmull_polyval_update(keys, in, nblocks, accumulator);
+ kernel_neon_end();
+ } else {
+ polyval_update_non4k(keys->key_powers[NUM_KEY_POWERS-1], in,
+ nblocks, accumulator);
+ }
+}
+
+static void internal_polyval_mul(u8 *op1, const u8 *op2)
+{
+ if (likely(crypto_simd_usable())) {
+ kernel_neon_begin();
+ pmull_polyval_mul(op1, op2);
+ kernel_neon_end();
+ } else {
+ polyval_mul_non4k(op1, op2);
+ }
+}
+
+static int polyval_arm64_setkey(struct crypto_shash *tfm,
+ const u8 *key, unsigned int keylen)
+{
+ struct polyval_tfm_ctx *tctx = crypto_shash_ctx(tfm);
+ int i;
+
+ if (keylen != POLYVAL_BLOCK_SIZE)
+ return -EINVAL;
+
+ memcpy(tctx->key_powers[NUM_KEY_POWERS-1], key, POLYVAL_BLOCK_SIZE);
+
+ for (i = NUM_KEY_POWERS-2; i >= 0; i--) {
+ memcpy(tctx->key_powers[i], key, POLYVAL_BLOCK_SIZE);
+ internal_polyval_mul(tctx->key_powers[i],
+ tctx->key_powers[i+1]);
+ }
+
+ return 0;
+}
+
+static int polyval_arm64_init(struct shash_desc *desc)
+{
+ struct polyval_desc_ctx *dctx = shash_desc_ctx(desc);
+
+ memset(dctx, 0, sizeof(*dctx));
+
+ return 0;
+}
+
+static int polyval_arm64_update(struct shash_desc *desc,
+ const u8 *src, unsigned int srclen)
+{
+ struct polyval_desc_ctx *dctx = shash_desc_ctx(desc);
+ const struct polyval_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
+ u8 *pos;
+ unsigned int nblocks;
+ unsigned int n;
+
+ if (dctx->bytes) {
+ n = min(srclen, dctx->bytes);
+ pos = dctx->buffer + POLYVAL_BLOCK_SIZE - dctx->bytes;
+
+ dctx->bytes -= n;
+ srclen -= n;
+
+ while (n--)
+ *pos++ ^= *src++;
+
+ if (!dctx->bytes)
+ internal_polyval_mul(dctx->buffer,
+ tctx->key_powers[NUM_KEY_POWERS-1]);
+ }
+
+ while (srclen >= POLYVAL_BLOCK_SIZE) {
+ /* allow rescheduling every 4K bytes */
+ nblocks = min(srclen, 4096U) / POLYVAL_BLOCK_SIZE;
+ internal_polyval_update(tctx, src, nblocks, dctx->buffer);
+ srclen -= nblocks * POLYVAL_BLOCK_SIZE;
+ src += nblocks * POLYVAL_BLOCK_SIZE;
+ }
+
+ if (srclen) {
+ dctx->bytes = POLYVAL_BLOCK_SIZE - srclen;
+ pos = dctx->buffer;
+ while (srclen--)
+ *pos++ ^= *src++;
+ }
+
+ return 0;
+}
+
+static int polyval_arm64_final(struct shash_desc *desc, u8 *dst)
+{
+ struct polyval_desc_ctx *dctx = shash_desc_ctx(desc);
+ const struct polyval_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
+
+ if (dctx->bytes) {
+ internal_polyval_mul(dctx->buffer,
+ tctx->key_powers[NUM_KEY_POWERS-1]);
+ }
+
+ memcpy(dst, dctx->buffer, POLYVAL_BLOCK_SIZE);
+
+ return 0;
+}
+
+static struct shash_alg polyval_alg = {
+ .digestsize = POLYVAL_DIGEST_SIZE,
+ .init = polyval_arm64_init,
+ .update = polyval_arm64_update,
+ .final = polyval_arm64_final,
+ .setkey = polyval_arm64_setkey,
+ .descsize = sizeof(struct polyval_desc_ctx),
+ .base = {
+ .cra_name = "polyval",
+ .cra_driver_name = "polyval-ce",
+ .cra_priority = 200,
+ .cra_blocksize = POLYVAL_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct polyval_tfm_ctx),
+ .cra_module = THIS_MODULE,
+ },
+};
+
+static int __init polyval_ce_mod_init(void)
+{
+ return crypto_register_shash(&polyval_alg);
+}
+
+static void __exit polyval_ce_mod_exit(void)
+{
+ crypto_unregister_shash(&polyval_alg);
+}
+
+module_cpu_feature_match(PMULL, polyval_ce_mod_init)
+module_exit(polyval_ce_mod_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("POLYVAL hash function accelerated by ARMv8 Crypto Extensions");
+MODULE_ALIAS_CRYPTO("polyval");
+MODULE_ALIAS_CRYPTO("polyval-ce");
diff --git a/arch/powerpc/crypto/aes-spe-glue.c b/arch/powerpc/crypto/aes-spe-glue.c
index e8dfe9fb0266..efab78a3a8f6 100644
--- a/arch/powerpc/crypto/aes-spe-glue.c
+++ b/arch/powerpc/crypto/aes-spe-glue.c
@@ -28,7 +28,7 @@
* instructions per clock cycle using one 32/64 bit unit (SU1) and one 32
* bit unit (SU2). One of these can be a memory access that is executed via
* a single load and store unit (LSU). XTS-AES-256 takes ~780 operations per
- * 16 byte block block or 25 cycles per byte. Thus 768 bytes of input data
+ * 16 byte block or 25 cycles per byte. Thus 768 bytes of input data
* will need an estimated maximum of 20,000 cycles. Headroom for cache misses
* included. Even with the low end model clocked at 667 MHz this equals to a
* critical time window of less than 30us. The value has been chosen to
diff --git a/arch/x86/crypto/Makefile b/arch/x86/crypto/Makefile
index 2831685adf6f..04d07ab744b2 100644
--- a/arch/x86/crypto/Makefile
+++ b/arch/x86/crypto/Makefile
@@ -61,14 +61,15 @@ sha256-ssse3-$(CONFIG_AS_SHA256_NI) += sha256_ni_asm.o
obj-$(CONFIG_CRYPTO_SHA512_SSSE3) += sha512-ssse3.o
sha512-ssse3-y := sha512-ssse3-asm.o sha512-avx-asm.o sha512-avx2-asm.o sha512_ssse3_glue.o
-obj-$(CONFIG_CRYPTO_BLAKE2S_X86) += blake2s-x86_64.o
-blake2s-x86_64-y := blake2s-shash.o
-obj-$(if $(CONFIG_CRYPTO_BLAKE2S_X86),y) += libblake2s-x86_64.o
+obj-$(CONFIG_CRYPTO_BLAKE2S_X86) += libblake2s-x86_64.o
libblake2s-x86_64-y := blake2s-core.o blake2s-glue.o
obj-$(CONFIG_CRYPTO_GHASH_CLMUL_NI_INTEL) += ghash-clmulni-intel.o
ghash-clmulni-intel-y := ghash-clmulni-intel_asm.o ghash-clmulni-intel_glue.o
+obj-$(CONFIG_CRYPTO_POLYVAL_CLMUL_NI) += polyval-clmulni.o
+polyval-clmulni-y := polyval-clmulni_asm.o polyval-clmulni_glue.o
+
obj-$(CONFIG_CRYPTO_CRC32C_INTEL) += crc32c-intel.o
crc32c-intel-y := crc32c-intel_glue.o
crc32c-intel-$(CONFIG_64BIT) += crc32c-pcl-intel-asm_64.o
diff --git a/arch/x86/crypto/aes_ctrby8_avx-x86_64.S b/arch/x86/crypto/aes_ctrby8_avx-x86_64.S
index 43852ba6e19c..2402b9418cd7 100644
--- a/arch/x86/crypto/aes_ctrby8_avx-x86_64.S
+++ b/arch/x86/crypto/aes_ctrby8_avx-x86_64.S
@@ -23,6 +23,11 @@
#define VMOVDQ vmovdqu
+/*
+ * Note: the "x" prefix in these aliases means "this is an xmm register". The
+ * alias prefixes have no relation to XCTR where the "X" prefix means "XOR
+ * counter".
+ */
#define xdata0 %xmm0
#define xdata1 %xmm1
#define xdata2 %xmm2
@@ -31,8 +36,10 @@
#define xdata5 %xmm5
#define xdata6 %xmm6
#define xdata7 %xmm7
-#define xcounter %xmm8
-#define xbyteswap %xmm9
+#define xcounter %xmm8 // CTR mode only
+#define xiv %xmm8 // XCTR mode only
+#define xbyteswap %xmm9 // CTR mode only
+#define xtmp %xmm9 // XCTR mode only
#define xkey0 %xmm10
#define xkey4 %xmm11
#define xkey8 %xmm12
@@ -45,7 +52,7 @@
#define p_keys %rdx
#define p_out %rcx
#define num_bytes %r8
-
+#define counter %r9 // XCTR mode only
#define tmp %r10
#define DDQ_DATA 0
#define XDATA 1
@@ -102,7 +109,7 @@ ddq_add_8:
* do_aes num_in_par load_keys key_len
* This increments p_in, but not p_out
*/
-.macro do_aes b, k, key_len
+.macro do_aes b, k, key_len, xctr
.set by, \b
.set load_keys, \k
.set klen, \key_len
@@ -111,29 +118,48 @@ ddq_add_8:
vmovdqa 0*16(p_keys), xkey0
.endif
- vpshufb xbyteswap, xcounter, xdata0
-
- .set i, 1
- .rept (by - 1)
- club XDATA, i
- vpaddq (ddq_add_1 + 16 * (i - 1))(%rip), xcounter, var_xdata
- vptest ddq_low_msk(%rip), var_xdata
- jnz 1f
- vpaddq ddq_high_add_1(%rip), var_xdata, var_xdata
- vpaddq ddq_high_add_1(%rip), xcounter, xcounter
- 1:
- vpshufb xbyteswap, var_xdata, var_xdata
- .set i, (i +1)
- .endr
+ .if \xctr
+ movq counter, xtmp
+ .set i, 0
+ .rept (by)
+ club XDATA, i
+ vpaddq (ddq_add_1 + 16 * i)(%rip), xtmp, var_xdata
+ .set i, (i +1)
+ .endr
+ .set i, 0
+ .rept (by)
+ club XDATA, i
+ vpxor xiv, var_xdata, var_xdata
+ .set i, (i +1)
+ .endr
+ .else
+ vpshufb xbyteswap, xcounter, xdata0
+ .set i, 1
+ .rept (by - 1)
+ club XDATA, i
+ vpaddq (ddq_add_1 + 16 * (i - 1))(%rip), xcounter, var_xdata
+ vptest ddq_low_msk(%rip), var_xdata
+ jnz 1f
+ vpaddq ddq_high_add_1(%rip), var_xdata, var_xdata
+ vpaddq ddq_high_add_1(%rip), xcounter, xcounter
+ 1:
+ vpshufb xbyteswap, var_xdata, var_xdata
+ .set i, (i +1)
+ .endr
+ .endif
vmovdqa 1*16(p_keys), xkeyA
vpxor xkey0, xdata0, xdata0
- vpaddq (ddq_add_1 + 16 * (by - 1))(%rip), xcounter, xcounter
- vptest ddq_low_msk(%rip), xcounter
- jnz 1f
- vpaddq ddq_high_add_1(%rip), xcounter, xcounter
- 1:
+ .if \xctr
+ add $by, counter
+ .else
+ vpaddq (ddq_add_1 + 16 * (by - 1))(%rip), xcounter, xcounter
+ vptest ddq_low_msk(%rip), xcounter
+ jnz 1f
+ vpaddq ddq_high_add_1(%rip), xcounter, xcounter
+ 1:
+ .endif
.set i, 1
.rept (by - 1)
@@ -371,94 +397,99 @@ ddq_add_8:
.endr
.endm
-.macro do_aes_load val, key_len
- do_aes \val, 1, \key_len
+.macro do_aes_load val, key_len, xctr
+ do_aes \val, 1, \key_len, \xctr
.endm
-.macro do_aes_noload val, key_len
- do_aes \val, 0, \key_len
+.macro do_aes_noload val, key_len, xctr
+ do_aes \val, 0, \key_len, \xctr
.endm
/* main body of aes ctr load */
-.macro do_aes_ctrmain key_len
+.macro do_aes_ctrmain key_len, xctr
cmp $16, num_bytes
- jb .Ldo_return2\key_len
+ jb .Ldo_return2\xctr\key_len
- vmovdqa byteswap_const(%rip), xbyteswap
- vmovdqu (p_iv), xcounter
- vpshufb xbyteswap, xcounter, xcounter
+ .if \xctr
+ shr $4, counter
+ vmovdqu (p_iv), xiv
+ .else
+ vmovdqa byteswap_const(%rip), xbyteswap
+ vmovdqu (p_iv), xcounter
+ vpshufb xbyteswap, xcounter, xcounter
+ .endif
mov num_bytes, tmp
and $(7*16), tmp
- jz .Lmult_of_8_blks\key_len
+ jz .Lmult_of_8_blks\xctr\key_len
/* 1 <= tmp <= 7 */
cmp $(4*16), tmp
- jg .Lgt4\key_len
- je .Leq4\key_len
+ jg .Lgt4\xctr\key_len
+ je .Leq4\xctr\key_len
-.Llt4\key_len:
+.Llt4\xctr\key_len:
cmp $(2*16), tmp
- jg .Leq3\key_len
- je .Leq2\key_len
+ jg .Leq3\xctr\key_len
+ je .Leq2\xctr\key_len
-.Leq1\key_len:
- do_aes_load 1, \key_len
+.Leq1\xctr\key_len:
+ do_aes_load 1, \key_len, \xctr
add $(1*16), p_out
and $(~7*16), num_bytes
- jz .Ldo_return2\key_len
- jmp .Lmain_loop2\key_len
+ jz .Ldo_return2\xctr\key_len
+ jmp .Lmain_loop2\xctr\key_len
-.Leq2\key_len:
- do_aes_load 2, \key_len
+.Leq2\xctr\key_len:
+ do_aes_load 2, \key_len, \xctr
add $(2*16), p_out
and $(~7*16), num_bytes
- jz .Ldo_return2\key_len
- jmp .Lmain_loop2\key_len
+ jz .Ldo_return2\xctr\key_len
+ jmp .Lmain_loop2\xctr\key_len
-.Leq3\key_len:
- do_aes_load 3, \key_len
+.Leq3\xctr\key_len:
+ do_aes_load 3, \key_len, \xctr
add $(3*16), p_out
and $(~7*16), num_bytes
- jz .Ldo_return2\key_len
- jmp .Lmain_loop2\key_len
+ jz .Ldo_return2\xctr\key_len
+ jmp .Lmain_loop2\xctr\key_len
-.Leq4\key_len:
- do_aes_load 4, \key_len
+.Leq4\xctr\key_len:
+ do_aes_load 4, \key_len, \xctr
add $(4*16), p_out
and $(~7*16), num_bytes
- jz .Ldo_return2\key_len
- jmp .Lmain_loop2\key_len
+ jz .Ldo_return2\xctr\key_len
+ jmp .Lmain_loop2\xctr\key_len
-.Lgt4\key_len:
+.Lgt4\xctr\key_len:
cmp $(6*16), tmp
- jg .Leq7\key_len
- je .Leq6\key_len
+ jg .Leq7\xctr\key_len
+ je .Leq6\xctr\key_len
-.Leq5\key_len:
- do_aes_load 5, \key_len
+.Leq5\xctr\key_len:
+ do_aes_load 5, \key_len, \xctr
add $(5*16), p_out
and $(~7*16), num_bytes
- jz .Ldo_return2\key_len
- jmp .Lmain_loop2\key_len
+ jz .Ldo_return2\xctr\key_len
+ jmp .Lmain_loop2\xctr\key_len
-.Leq6\key_len:
- do_aes_load 6, \key_len
+.Leq6\xctr\key_len:
+ do_aes_load 6, \key_len, \xctr
add $(6*16), p_out
and $(~7*16), num_bytes
- jz .Ldo_return2\key_len
- jmp .Lmain_loop2\key_len
+ jz .Ldo_return2\xctr\key_len
+ jmp .Lmain_loop2\xctr\key_len
-.Leq7\key_len:
- do_aes_load 7, \key_len
+.Leq7\xctr\key_len:
+ do_aes_load 7, \key_len, \xctr
add $(7*16), p_out
and $(~7*16), num_bytes
- jz .Ldo_return2\key_len
- jmp .Lmain_loop2\key_len
+ jz .Ldo_return2\xctr\key_len
+ jmp .Lmain_loop2\xctr\key_len
-.Lmult_of_8_blks\key_len:
+.Lmult_of_8_blks\xctr\key_len:
.if (\key_len != KEY_128)
vmovdqa 0*16(p_keys), xkey0
vmovdqa 4*16(p_keys), xkey4
@@ -471,17 +502,19 @@ ddq_add_8:
vmovdqa 9*16(p_keys), xkey12
.endif
.align 16
-.Lmain_loop2\key_len:
+.Lmain_loop2\xctr\key_len:
/* num_bytes is a multiple of 8 and >0 */
- do_aes_noload 8, \key_len
+ do_aes_noload 8, \key_len, \xctr
add $(8*16), p_out
sub $(8*16), num_bytes
- jne .Lmain_loop2\key_len
+ jne .Lmain_loop2\xctr\key_len
-.Ldo_return2\key_len:
- /* return updated IV */
- vpshufb xbyteswap, xcounter, xcounter
- vmovdqu xcounter, (p_iv)
+.Ldo_return2\xctr\key_len:
+ .if !\xctr
+ /* return updated IV */
+ vpshufb xbyteswap, xcounter, xcounter
+ vmovdqu xcounter, (p_iv)
+ .endif
RET
.endm
@@ -494,7 +527,7 @@ ddq_add_8:
*/
SYM_FUNC_START(aes_ctr_enc_128_avx_by8)
/* call the aes main loop */
- do_aes_ctrmain KEY_128
+ do_aes_ctrmain KEY_128 0
SYM_FUNC_END(aes_ctr_enc_128_avx_by8)
@@ -507,7 +540,7 @@ SYM_FUNC_END(aes_ctr_enc_128_avx_by8)
*/
SYM_FUNC_START(aes_ctr_enc_192_avx_by8)
/* call the aes main loop */
- do_aes_ctrmain KEY_192
+ do_aes_ctrmain KEY_192 0
SYM_FUNC_END(aes_ctr_enc_192_avx_by8)
@@ -520,6 +553,45 @@ SYM_FUNC_END(aes_ctr_enc_192_avx_by8)
*/
SYM_FUNC_START(aes_ctr_enc_256_avx_by8)
/* call the aes main loop */
- do_aes_ctrmain KEY_256
+ do_aes_ctrmain KEY_256 0
SYM_FUNC_END(aes_ctr_enc_256_avx_by8)
+
+/*
+ * routine to do AES128 XCTR enc/decrypt "by8"
+ * XMM registers are clobbered.
+ * Saving/restoring must be done at a higher level
+ * aes_xctr_enc_128_avx_by8(const u8 *in, const u8 *iv, const void *keys,
+ * u8* out, unsigned int num_bytes, unsigned int byte_ctr)
+ */
+SYM_FUNC_START(aes_xctr_enc_128_avx_by8)
+ /* call the aes main loop */
+ do_aes_ctrmain KEY_128 1
+
+SYM_FUNC_END(aes_xctr_enc_128_avx_by8)
+
+/*
+ * routine to do AES192 XCTR enc/decrypt "by8"
+ * XMM registers are clobbered.
+ * Saving/restoring must be done at a higher level
+ * aes_xctr_enc_192_avx_by8(const u8 *in, const u8 *iv, const void *keys,
+ * u8* out, unsigned int num_bytes, unsigned int byte_ctr)
+ */
+SYM_FUNC_START(aes_xctr_enc_192_avx_by8)
+ /* call the aes main loop */
+ do_aes_ctrmain KEY_192 1
+
+SYM_FUNC_END(aes_xctr_enc_192_avx_by8)
+
+/*
+ * routine to do AES256 XCTR enc/decrypt "by8"
+ * XMM registers are clobbered.
+ * Saving/restoring must be done at a higher level
+ * aes_xctr_enc_256_avx_by8(const u8 *in, const u8 *iv, const void *keys,
+ * u8* out, unsigned int num_bytes, unsigned int byte_ctr)
+ */
+SYM_FUNC_START(aes_xctr_enc_256_avx_by8)
+ /* call the aes main loop */
+ do_aes_ctrmain KEY_256 1
+
+SYM_FUNC_END(aes_xctr_enc_256_avx_by8)
diff --git a/arch/x86/crypto/aesni-intel_glue.c b/arch/x86/crypto/aesni-intel_glue.c
index 41901ba9d3a2..a5b0cb3efeba 100644
--- a/arch/x86/crypto/aesni-intel_glue.c
+++ b/arch/x86/crypto/aesni-intel_glue.c
@@ -135,6 +135,20 @@ asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
void *keys, u8 *out, unsigned int num_bytes);
asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
void *keys, u8 *out, unsigned int num_bytes);
+
+
+asmlinkage void aes_xctr_enc_128_avx_by8(const u8 *in, const u8 *iv,
+ const void *keys, u8 *out, unsigned int num_bytes,
+ unsigned int byte_ctr);
+
+asmlinkage void aes_xctr_enc_192_avx_by8(const u8 *in, const u8 *iv,
+ const void *keys, u8 *out, unsigned int num_bytes,
+ unsigned int byte_ctr);
+
+asmlinkage void aes_xctr_enc_256_avx_by8(const u8 *in, const u8 *iv,
+ const void *keys, u8 *out, unsigned int num_bytes,
+ unsigned int byte_ctr);
+
/*
* asmlinkage void aesni_gcm_init_avx_gen2()
* gcm_data *my_ctx_data, context data
@@ -527,6 +541,59 @@ static int ctr_crypt(struct skcipher_request *req)
return err;
}
+static void aesni_xctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
+ const u8 *in, unsigned int len, u8 *iv,
+ unsigned int byte_ctr)
+{
+ if (ctx->key_length == AES_KEYSIZE_128)
+ aes_xctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len,
+ byte_ctr);
+ else if (ctx->key_length == AES_KEYSIZE_192)
+ aes_xctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len,
+ byte_ctr);
+ else
+ aes_xctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len,
+ byte_ctr);
+}
+
+static int xctr_crypt(struct skcipher_request *req)
+{
+ struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
+ struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
+ u8 keystream[AES_BLOCK_SIZE];
+ struct skcipher_walk walk;
+ unsigned int nbytes;
+ unsigned int byte_ctr = 0;
+ int err;
+ __le32 block[AES_BLOCK_SIZE / sizeof(__le32)];
+
+ err = skcipher_walk_virt(&walk, req, false);
+
+ while ((nbytes = walk.nbytes) > 0) {
+ kernel_fpu_begin();
+ if (nbytes & AES_BLOCK_MASK)
+ aesni_xctr_enc_avx_tfm(ctx, walk.dst.virt.addr,
+ walk.src.virt.addr, nbytes & AES_BLOCK_MASK,
+ walk.iv, byte_ctr);
+ nbytes &= ~AES_BLOCK_MASK;
+ byte_ctr += walk.nbytes - nbytes;
+
+ if (walk.nbytes == walk.total && nbytes > 0) {
+ memcpy(block, walk.iv, AES_BLOCK_SIZE);
+ block[0] ^= cpu_to_le32(1 + byte_ctr / AES_BLOCK_SIZE);
+ aesni_enc(ctx, keystream, (u8 *)block);
+ crypto_xor_cpy(walk.dst.virt.addr + walk.nbytes -
+ nbytes, walk.src.virt.addr + walk.nbytes
+ - nbytes, keystream, nbytes);
+ byte_ctr += nbytes;
+ nbytes = 0;
+ }
+ kernel_fpu_end();
+ err = skcipher_walk_done(&walk, nbytes);
+ }
+ return err;
+}
+
static int
rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
{
@@ -1051,6 +1118,33 @@ static
struct simd_skcipher_alg *aesni_simd_skciphers[ARRAY_SIZE(aesni_skciphers)];
#ifdef CONFIG_X86_64
+/*
+ * XCTR does not have a non-AVX implementation, so it must be enabled
+ * conditionally.
+ */
+static struct skcipher_alg aesni_xctr = {
+ .base = {
+ .cra_name = "__xctr(aes)",
+ .cra_driver_name = "__xctr-aes-aesni",
+ .cra_priority = 400,
+ .cra_flags = CRYPTO_ALG_INTERNAL,
+ .cra_blocksize = 1,
+ .cra_ctxsize = CRYPTO_AES_CTX_SIZE,
+ .cra_module = THIS_MODULE,
+ },
+ .min_keysize = AES_MIN_KEY_SIZE,
+ .max_keysize = AES_MAX_KEY_SIZE,
+ .ivsize = AES_BLOCK_SIZE,
+ .chunksize = AES_BLOCK_SIZE,
+ .setkey = aesni_skcipher_setkey,
+ .encrypt = xctr_crypt,
+ .decrypt = xctr_crypt,
+};
+
+static struct simd_skcipher_alg *aesni_simd_xctr;
+#endif /* CONFIG_X86_64 */
+
+#ifdef CONFIG_X86_64
static int generic_gcmaes_set_key(struct crypto_aead *aead, const u8 *key,
unsigned int key_len)
{
@@ -1163,7 +1257,7 @@ static int __init aesni_init(void)
static_call_update(aesni_ctr_enc_tfm, aesni_ctr_enc_avx_tfm);
pr_info("AES CTR mode by8 optimization enabled\n");
}
-#endif
+#endif /* CONFIG_X86_64 */
err = crypto_register_alg(&aesni_cipher_alg);
if (err)
@@ -1180,8 +1274,22 @@ static int __init aesni_init(void)
if (err)
goto unregister_skciphers;
+#ifdef CONFIG_X86_64
+ if (boot_cpu_has(X86_FEATURE_AVX))
+ err = simd_register_skciphers_compat(&aesni_xctr, 1,
+ &aesni_simd_xctr);
+ if (err)
+ goto unregister_aeads;
+#endif /* CONFIG_X86_64 */
+
return 0;
+#ifdef CONFIG_X86_64
+unregister_aeads:
+ simd_unregister_aeads(aesni_aeads, ARRAY_SIZE(aesni_aeads),
+ aesni_simd_aeads);
+#endif /* CONFIG_X86_64 */
+
unregister_skciphers:
simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
aesni_simd_skciphers);
@@ -1197,6 +1305,10 @@ static void __exit aesni_exit(void)
simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
aesni_simd_skciphers);
crypto_unregister_alg(&aesni_cipher_alg);
+#ifdef CONFIG_X86_64
+ if (boot_cpu_has(X86_FEATURE_AVX))
+ simd_unregister_skciphers(&aesni_xctr, 1, &aesni_simd_xctr);
+#endif /* CONFIG_X86_64 */
}
late_initcall(aesni_init);
diff --git a/arch/x86/crypto/blake2s-glue.c b/arch/x86/crypto/blake2s-glue.c
index 69853c13e8fb..aaba21230528 100644
--- a/arch/x86/crypto/blake2s-glue.c
+++ b/arch/x86/crypto/blake2s-glue.c
@@ -4,7 +4,6 @@
*/
#include <crypto/internal/blake2s.h>
-#include <crypto/internal/simd.h>
#include <linux/types.h>
#include <linux/jump_label.h>
@@ -33,7 +32,7 @@ void blake2s_compress(struct blake2s_state *state, const u8 *block,
/* SIMD disables preemption, so relax after processing each page. */
BUILD_BUG_ON(SZ_4K / BLAKE2S_BLOCK_SIZE < 8);
- if (!static_branch_likely(&blake2s_use_ssse3) || !crypto_simd_usable()) {
+ if (!static_branch_likely(&blake2s_use_ssse3) || !may_use_simd()) {
blake2s_compress_generic(state, block, nblocks, inc);
return;
}
diff --git a/arch/x86/crypto/blake2s-shash.c b/arch/x86/crypto/blake2s-shash.c
deleted file mode 100644
index 59ae28abe35c..000000000000
--- a/arch/x86/crypto/blake2s-shash.c
+++ /dev/null
@@ -1,77 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0 OR MIT
-/*
- * Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
- */
-
-#include <crypto/internal/blake2s.h>
-#include <crypto/internal/simd.h>
-#include <crypto/internal/hash.h>
-
-#include <linux/types.h>
-#include <linux/kernel.h>
-#include <linux/module.h>
-#include <linux/sizes.h>
-
-#include <asm/cpufeature.h>
-#include <asm/processor.h>
-
-static int crypto_blake2s_update_x86(struct shash_desc *desc,
- const u8 *in, unsigned int inlen)
-{
- return crypto_blake2s_update(desc, in, inlen, false);
-}
-
-static int crypto_blake2s_final_x86(struct shash_desc *desc, u8 *out)
-{
- return crypto_blake2s_final(desc, out, false);
-}
-
-#define BLAKE2S_ALG(name, driver_name, digest_size) \
- { \
- .base.cra_name = name, \
- .base.cra_driver_name = driver_name, \
- .base.cra_priority = 200, \
- .base.cra_flags = CRYPTO_ALG_OPTIONAL_KEY, \
- .base.cra_blocksize = BLAKE2S_BLOCK_SIZE, \
- .base.cra_ctxsize = sizeof(struct blake2s_tfm_ctx), \
- .base.cra_module = THIS_MODULE, \
- .digestsize = digest_size, \
- .setkey = crypto_blake2s_setkey, \
- .init = crypto_blake2s_init, \
- .update = crypto_blake2s_update_x86, \
- .final = crypto_blake2s_final_x86, \
- .descsize = sizeof(struct blake2s_state), \
- }
-
-static struct shash_alg blake2s_algs[] = {
- BLAKE2S_ALG("blake2s-128", "blake2s-128-x86", BLAKE2S_128_HASH_SIZE),
- BLAKE2S_ALG("blake2s-160", "blake2s-160-x86", BLAKE2S_160_HASH_SIZE),
- BLAKE2S_ALG("blake2s-224", "blake2s-224-x86", BLAKE2S_224_HASH_SIZE),
- BLAKE2S_ALG("blake2s-256", "blake2s-256-x86", BLAKE2S_256_HASH_SIZE),
-};
-
-static int __init blake2s_mod_init(void)
-{
- if (IS_REACHABLE(CONFIG_CRYPTO_HASH) && boot_cpu_has(X86_FEATURE_SSSE3))
- return crypto_register_shashes(blake2s_algs, ARRAY_SIZE(blake2s_algs));
- return 0;
-}
-
-static void __exit blake2s_mod_exit(void)
-{
- if (IS_REACHABLE(CONFIG_CRYPTO_HASH) && boot_cpu_has(X86_FEATURE_SSSE3))
- crypto_unregister_shashes(blake2s_algs, ARRAY_SIZE(blake2s_algs));
-}
-
-module_init(blake2s_mod_init);
-module_exit(blake2s_mod_exit);
-
-MODULE_ALIAS_CRYPTO("blake2s-128");
-MODULE_ALIAS_CRYPTO("blake2s-128-x86");
-MODULE_ALIAS_CRYPTO("blake2s-160");
-MODULE_ALIAS_CRYPTO("blake2s-160-x86");
-MODULE_ALIAS_CRYPTO("blake2s-224");
-MODULE_ALIAS_CRYPTO("blake2s-224-x86");
-MODULE_ALIAS_CRYPTO("blake2s-256");
-MODULE_ALIAS_CRYPTO("blake2s-256-x86");
-MODULE_LICENSE("GPL v2");
diff --git a/arch/x86/crypto/blowfish_glue.c b/arch/x86/crypto/blowfish_glue.c
index ba06322c1e39..019c64c1340a 100644
--- a/arch/x86/crypto/blowfish_glue.c
+++ b/arch/x86/crypto/blowfish_glue.c
@@ -144,7 +144,7 @@ static int cbc_encrypt(struct skcipher_request *req)
err = skcipher_walk_virt(&walk, req, false);
- while ((nbytes = walk.nbytes)) {
+ while (walk.nbytes) {
nbytes = __cbc_encrypt(ctx, &walk);
err = skcipher_walk_done(&walk, nbytes);
}
@@ -225,7 +225,7 @@ static int cbc_decrypt(struct skcipher_request *req)
err = skcipher_walk_virt(&walk, req, false);
- while ((nbytes = walk.nbytes)) {
+ while (walk.nbytes) {
nbytes = __cbc_decrypt(ctx, &walk);
err = skcipher_walk_done(&walk, nbytes);
}
diff --git a/arch/x86/crypto/polyval-clmulni_asm.S b/arch/x86/crypto/polyval-clmulni_asm.S
new file mode 100644
index 000000000000..a6ebe4e7dd2b
--- /dev/null
+++ b/arch/x86/crypto/polyval-clmulni_asm.S
@@ -0,0 +1,321 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Copyright 2021 Google LLC
+ */
+/*
+ * This is an efficient implementation of POLYVAL using intel PCLMULQDQ-NI
+ * instructions. It works on 8 blocks at a time, by precomputing the first 8
+ * keys powers h^8, ..., h^1 in the POLYVAL finite field. This precomputation
+ * allows us to split finite field multiplication into two steps.
+ *
+ * In the first step, we consider h^i, m_i as normal polynomials of degree less
+ * than 128. We then compute p(x) = h^8m_0 + ... + h^1m_7 where multiplication
+ * is simply polynomial multiplication.
+ *
+ * In the second step, we compute the reduction of p(x) modulo the finite field
+ * modulus g(x) = x^128 + x^127 + x^126 + x^121 + 1.
+ *
+ * This two step process is equivalent to computing h^8m_0 + ... + h^1m_7 where
+ * multiplication is finite field multiplication. The advantage is that the
+ * two-step process only requires 1 finite field reduction for every 8
+ * polynomial multiplications. Further parallelism is gained by interleaving the
+ * multiplications and polynomial reductions.
+ */
+
+#include <linux/linkage.h>
+#include <asm/frame.h>
+
+#define STRIDE_BLOCKS 8
+
+#define GSTAR %xmm7
+#define PL %xmm8
+#define PH %xmm9
+#define TMP_XMM %xmm11
+#define LO %xmm12
+#define HI %xmm13
+#define MI %xmm14
+#define SUM %xmm15
+
+#define KEY_POWERS %rdi
+#define MSG %rsi
+#define BLOCKS_LEFT %rdx
+#define ACCUMULATOR %rcx
+#define TMP %rax
+
+.section .rodata.cst16.gstar, "aM", @progbits, 16
+.align 16
+
+.Lgstar:
+ .quad 0xc200000000000000, 0xc200000000000000
+
+.text
+
+/*
+ * Performs schoolbook1_iteration on two lists of 128-bit polynomials of length
+ * count pointed to by MSG and KEY_POWERS.
+ */
+.macro schoolbook1 count
+ .set i, 0
+ .rept (\count)
+ schoolbook1_iteration i 0
+ .set i, (i +1)
+ .endr
+.endm
+
+/*
+ * Computes the product of two 128-bit polynomials at the memory locations
+ * specified by (MSG + 16*i) and (KEY_POWERS + 16*i) and XORs the components of
+ * the 256-bit product into LO, MI, HI.
+ *
+ * Given:
+ * X = [X_1 : X_0]
+ * Y = [Y_1 : Y_0]
+ *
+ * We compute:
+ * LO += X_0 * Y_0
+ * MI += X_0 * Y_1 + X_1 * Y_0
+ * HI += X_1 * Y_1
+ *
+ * Later, the 256-bit result can be extracted as:
+ * [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0]
+ * This step is done when computing the polynomial reduction for efficiency
+ * reasons.
+ *
+ * If xor_sum == 1, then also XOR the value of SUM into m_0. This avoids an
+ * extra multiplication of SUM and h^8.
+ */
+.macro schoolbook1_iteration i xor_sum
+ movups (16*\i)(MSG), %xmm0
+ .if (\i == 0 && \xor_sum == 1)
+ pxor SUM, %xmm0
+ .endif
+ vpclmulqdq $0x01, (16*\i)(KEY_POWERS), %xmm0, %xmm2
+ vpclmulqdq $0x00, (16*\i)(KEY_POWERS), %xmm0, %xmm1
+ vpclmulqdq $0x10, (16*\i)(KEY_POWERS), %xmm0, %xmm3
+ vpclmulqdq $0x11, (16*\i)(KEY_POWERS), %xmm0, %xmm4
+ vpxor %xmm2, MI, MI
+ vpxor %xmm1, LO, LO
+ vpxor %xmm4, HI, HI
+ vpxor %xmm3, MI, MI
+.endm
+
+/*
+ * Performs the same computation as schoolbook1_iteration, except we expect the
+ * arguments to already be loaded into xmm0 and xmm1 and we set the result
+ * registers LO, MI, and HI directly rather than XOR'ing into them.
+ */
+.macro schoolbook1_noload
+ vpclmulqdq $0x01, %xmm0, %xmm1, MI
+ vpclmulqdq $0x10, %xmm0, %xmm1, %xmm2
+ vpclmulqdq $0x00, %xmm0, %xmm1, LO
+ vpclmulqdq $0x11, %xmm0, %xmm1, HI
+ vpxor %xmm2, MI, MI
+.endm
+
+/*
+ * Computes the 256-bit polynomial represented by LO, HI, MI. Stores
+ * the result in PL, PH.
+ * [PH : PL] = [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0]
+ */
+.macro schoolbook2
+ vpslldq $8, MI, PL
+ vpsrldq $8, MI, PH
+ pxor LO, PL
+ pxor HI, PH
+.endm
+
+/*
+ * Computes the 128-bit reduction of PH : PL. Stores the result in dest.
+ *
+ * This macro computes p(x) mod g(x) where p(x) is in montgomery form and g(x) =
+ * x^128 + x^127 + x^126 + x^121 + 1.
+ *
+ * We have a 256-bit polynomial PH : PL = P_3 : P_2 : P_1 : P_0 that is the
+ * product of two 128-bit polynomials in Montgomery form. We need to reduce it
+ * mod g(x). Also, since polynomials in Montgomery form have an "extra" factor
+ * of x^128, this product has two extra factors of x^128. To get it back into
+ * Montgomery form, we need to remove one of these factors by dividing by x^128.
+ *
+ * To accomplish both of these goals, we add multiples of g(x) that cancel out
+ * the low 128 bits P_1 : P_0, leaving just the high 128 bits. Since the low
+ * bits are zero, the polynomial division by x^128 can be done by right shifting.
+ *
+ * Since the only nonzero term in the low 64 bits of g(x) is the constant term,
+ * the multiple of g(x) needed to cancel out P_0 is P_0 * g(x). The CPU can
+ * only do 64x64 bit multiplications, so split P_0 * g(x) into x^128 * P_0 +
+ * x^64 * g*(x) * P_0 + P_0, where g*(x) is bits 64-127 of g(x). Adding this to
+ * the original polynomial gives P_3 : P_2 + P_0 + T_1 : P_1 + T_0 : 0, where T
+ * = T_1 : T_0 = g*(x) * P_0. Thus, bits 0-63 got "folded" into bits 64-191.
+ *
+ * Repeating this same process on the next 64 bits "folds" bits 64-127 into bits
+ * 128-255, giving the answer in bits 128-255. This time, we need to cancel P_1
+ * + T_0 in bits 64-127. The multiple of g(x) required is (P_1 + T_0) * g(x) *
+ * x^64. Adding this to our previous computation gives P_3 + P_1 + T_0 + V_1 :
+ * P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_1 : V_0 = g*(x) * (P_1 + T_0).
+ *
+ * So our final computation is:
+ * T = T_1 : T_0 = g*(x) * P_0
+ * V = V_1 : V_0 = g*(x) * (P_1 + T_0)
+ * p(x) / x^{128} mod g(x) = P_3 + P_1 + T_0 + V_1 : P_2 + P_0 + T_1 + V_0
+ *
+ * The implementation below saves a XOR instruction by computing P_1 + T_0 : P_0
+ * + T_1 and XORing into dest, rather than separately XORing P_1 : P_0 and T_0 :
+ * T_1 into dest. This allows us to reuse P_1 + T_0 when computing V.
+ */
+.macro montgomery_reduction dest
+ vpclmulqdq $0x00, PL, GSTAR, TMP_XMM # TMP_XMM = T_1 : T_0 = P_0 * g*(x)
+ pshufd $0b01001110, TMP_XMM, TMP_XMM # TMP_XMM = T_0 : T_1
+ pxor PL, TMP_XMM # TMP_XMM = P_1 + T_0 : P_0 + T_1
+ pxor TMP_XMM, PH # PH = P_3 + P_1 + T_0 : P_2 + P_0 + T_1
+ pclmulqdq $0x11, GSTAR, TMP_XMM # TMP_XMM = V_1 : V_0 = V = [(P_1 + T_0) * g*(x)]
+ vpxor TMP_XMM, PH, \dest
+.endm
+
+/*
+ * Compute schoolbook multiplication for 8 blocks
+ * m_0h^8 + ... + m_7h^1
+ *
+ * If reduce is set, also computes the montgomery reduction of the
+ * previous full_stride call and XORs with the first message block.
+ * (m_0 + REDUCE(PL, PH))h^8 + ... + m_7h^1.
+ * I.e., the first multiplication uses m_0 + REDUCE(PL, PH) instead of m_0.
+ */
+.macro full_stride reduce
+ pxor LO, LO
+ pxor HI, HI
+ pxor MI, MI
+
+ schoolbook1_iteration 7 0
+ .if \reduce
+ vpclmulqdq $0x00, PL, GSTAR, TMP_XMM
+ .endif
+
+ schoolbook1_iteration 6 0
+ .if \reduce
+ pshufd $0b01001110, TMP_XMM, TMP_XMM
+ .endif
+
+ schoolbook1_iteration 5 0
+ .if \reduce
+ pxor PL, TMP_XMM
+ .endif
+
+ schoolbook1_iteration 4 0
+ .if \reduce
+ pxor TMP_XMM, PH
+ .endif
+
+ schoolbook1_iteration 3 0
+ .if \reduce
+ pclmulqdq $0x11, GSTAR, TMP_XMM
+ .endif
+
+ schoolbook1_iteration 2 0
+ .if \reduce
+ vpxor TMP_XMM, PH, SUM
+ .endif
+
+ schoolbook1_iteration 1 0
+
+ schoolbook1_iteration 0 1
+
+ addq $(8*16), MSG
+ schoolbook2
+.endm
+
+/*
+ * Process BLOCKS_LEFT blocks, where 0 < BLOCKS_LEFT < STRIDE_BLOCKS
+ */
+.macro partial_stride
+ mov BLOCKS_LEFT, TMP
+ shlq $4, TMP
+ addq $(16*STRIDE_BLOCKS), KEY_POWERS
+ subq TMP, KEY_POWERS
+
+ movups (MSG), %xmm0
+ pxor SUM, %xmm0
+ movaps (KEY_POWERS), %xmm1
+ schoolbook1_noload
+ dec BLOCKS_LEFT
+ addq $16, MSG
+ addq $16, KEY_POWERS
+
+ test $4, BLOCKS_LEFT
+ jz .Lpartial4BlocksDone
+ schoolbook1 4
+ addq $(4*16), MSG
+ addq $(4*16), KEY_POWERS
+.Lpartial4BlocksDone:
+ test $2, BLOCKS_LEFT
+ jz .Lpartial2BlocksDone
+ schoolbook1 2
+ addq $(2*16), MSG
+ addq $(2*16), KEY_POWERS
+.Lpartial2BlocksDone:
+ test $1, BLOCKS_LEFT
+ jz .LpartialDone
+ schoolbook1 1
+.LpartialDone:
+ schoolbook2
+ montgomery_reduction SUM
+.endm
+
+/*
+ * Perform montgomery multiplication in GF(2^128) and store result in op1.
+ *
+ * Computes op1*op2*x^{-128} mod x^128 + x^127 + x^126 + x^121 + 1
+ * If op1, op2 are in montgomery form, this computes the montgomery
+ * form of op1*op2.
+ *
+ * void clmul_polyval_mul(u8 *op1, const u8 *op2);
+ */
+SYM_FUNC_START(clmul_polyval_mul)
+ FRAME_BEGIN
+ vmovdqa .Lgstar(%rip), GSTAR
+ movups (%rdi), %xmm0
+ movups (%rsi), %xmm1
+ schoolbook1_noload
+ schoolbook2
+ montgomery_reduction SUM
+ movups SUM, (%rdi)
+ FRAME_END
+ RET
+SYM_FUNC_END(clmul_polyval_mul)
+
+/*
+ * Perform polynomial evaluation as specified by POLYVAL. This computes:
+ * h^n * accumulator + h^n * m_0 + ... + h^1 * m_{n-1}
+ * where n=nblocks, h is the hash key, and m_i are the message blocks.
+ *
+ * rdi - pointer to precomputed key powers h^8 ... h^1
+ * rsi - pointer to message blocks
+ * rdx - number of blocks to hash
+ * rcx - pointer to the accumulator
+ *
+ * void clmul_polyval_update(const struct polyval_tfm_ctx *keys,
+ * const u8 *in, size_t nblocks, u8 *accumulator);
+ */
+SYM_FUNC_START(clmul_polyval_update)
+ FRAME_BEGIN
+ vmovdqa .Lgstar(%rip), GSTAR
+ movups (ACCUMULATOR), SUM
+ subq $STRIDE_BLOCKS, BLOCKS_LEFT
+ js .LstrideLoopExit
+ full_stride 0
+ subq $STRIDE_BLOCKS, BLOCKS_LEFT
+ js .LstrideLoopExitReduce
+.LstrideLoop:
+ full_stride 1
+ subq $STRIDE_BLOCKS, BLOCKS_LEFT
+ jns .LstrideLoop
+.LstrideLoopExitReduce:
+ montgomery_reduction SUM
+.LstrideLoopExit:
+ add $STRIDE_BLOCKS, BLOCKS_LEFT
+ jz .LskipPartial
+ partial_stride
+.LskipPartial:
+ movups SUM, (ACCUMULATOR)
+ FRAME_END
+ RET
+SYM_FUNC_END(clmul_polyval_update)
diff --git a/arch/x86/crypto/polyval-clmulni_glue.c b/arch/x86/crypto/polyval-clmulni_glue.c
new file mode 100644
index 000000000000..b7664d018851
--- /dev/null
+++ b/arch/x86/crypto/polyval-clmulni_glue.c
@@ -0,0 +1,203 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Glue code for POLYVAL using PCMULQDQ-NI
+ *
+ * Copyright (c) 2007 Nokia Siemens Networks - Mikko Herranen <mh1@iki.fi>
+ * Copyright (c) 2009 Intel Corp.
+ * Author: Huang Ying <ying.huang@intel.com>
+ * Copyright 2021 Google LLC
+ */
+
+/*
+ * Glue code based on ghash-clmulni-intel_glue.c.
+ *
+ * This implementation of POLYVAL uses montgomery multiplication
+ * accelerated by PCLMULQDQ-NI to implement the finite field
+ * operations.
+ */
+
+#include <crypto/algapi.h>
+#include <crypto/internal/hash.h>
+#include <crypto/internal/simd.h>
+#include <crypto/polyval.h>
+#include <linux/crypto.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <asm/cpu_device_id.h>
+#include <asm/simd.h>
+
+#define NUM_KEY_POWERS 8
+
+struct polyval_tfm_ctx {
+ /*
+ * These powers must be in the order h^8, ..., h^1.
+ */
+ u8 key_powers[NUM_KEY_POWERS][POLYVAL_BLOCK_SIZE];
+};
+
+struct polyval_desc_ctx {
+ u8 buffer[POLYVAL_BLOCK_SIZE];
+ u32 bytes;
+};
+
+asmlinkage void clmul_polyval_update(const struct polyval_tfm_ctx *keys,
+ const u8 *in, size_t nblocks, u8 *accumulator);
+asmlinkage void clmul_polyval_mul(u8 *op1, const u8 *op2);
+
+static void internal_polyval_update(const struct polyval_tfm_ctx *keys,
+ const u8 *in, size_t nblocks, u8 *accumulator)
+{
+ if (likely(crypto_simd_usable())) {
+ kernel_fpu_begin();
+ clmul_polyval_update(keys, in, nblocks, accumulator);
+ kernel_fpu_end();
+ } else {
+ polyval_update_non4k(keys->key_powers[NUM_KEY_POWERS-1], in,
+ nblocks, accumulator);
+ }
+}
+
+static void internal_polyval_mul(u8 *op1, const u8 *op2)
+{
+ if (likely(crypto_simd_usable())) {
+ kernel_fpu_begin();
+ clmul_polyval_mul(op1, op2);
+ kernel_fpu_end();
+ } else {
+ polyval_mul_non4k(op1, op2);
+ }
+}
+
+static int polyval_x86_setkey(struct crypto_shash *tfm,
+ const u8 *key, unsigned int keylen)
+{
+ struct polyval_tfm_ctx *tctx = crypto_shash_ctx(tfm);
+ int i;
+
+ if (keylen != POLYVAL_BLOCK_SIZE)
+ return -EINVAL;
+
+ memcpy(tctx->key_powers[NUM_KEY_POWERS-1], key, POLYVAL_BLOCK_SIZE);
+
+ for (i = NUM_KEY_POWERS-2; i >= 0; i--) {
+ memcpy(tctx->key_powers[i], key, POLYVAL_BLOCK_SIZE);
+ internal_polyval_mul(tctx->key_powers[i],
+ tctx->key_powers[i+1]);
+ }
+
+ return 0;
+}
+
+static int polyval_x86_init(struct shash_desc *desc)
+{
+ struct polyval_desc_ctx *dctx = shash_desc_ctx(desc);
+
+ memset(dctx, 0, sizeof(*dctx));
+
+ return 0;
+}
+
+static int polyval_x86_update(struct shash_desc *desc,
+ const u8 *src, unsigned int srclen)
+{
+ struct polyval_desc_ctx *dctx = shash_desc_ctx(desc);
+ const struct polyval_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
+ u8 *pos;
+ unsigned int nblocks;
+ unsigned int n;
+
+ if (dctx->bytes) {
+ n = min(srclen, dctx->bytes);
+ pos = dctx->buffer + POLYVAL_BLOCK_SIZE - dctx->bytes;
+
+ dctx->bytes -= n;
+ srclen -= n;
+
+ while (n--)
+ *pos++ ^= *src++;
+
+ if (!dctx->bytes)
+ internal_polyval_mul(dctx->buffer,
+ tctx->key_powers[NUM_KEY_POWERS-1]);
+ }
+
+ while (srclen >= POLYVAL_BLOCK_SIZE) {
+ /* Allow rescheduling every 4K bytes. */
+ nblocks = min(srclen, 4096U) / POLYVAL_BLOCK_SIZE;
+ internal_polyval_update(tctx, src, nblocks, dctx->buffer);
+ srclen -= nblocks * POLYVAL_BLOCK_SIZE;
+ src += nblocks * POLYVAL_BLOCK_SIZE;
+ }
+
+ if (srclen) {
+ dctx->bytes = POLYVAL_BLOCK_SIZE - srclen;
+ pos = dctx->buffer;
+ while (srclen--)
+ *pos++ ^= *src++;
+ }
+
+ return 0;
+}
+
+static int polyval_x86_final(struct shash_desc *desc, u8 *dst)
+{
+ struct polyval_desc_ctx *dctx = shash_desc_ctx(desc);
+ const struct polyval_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
+
+ if (dctx->bytes) {
+ internal_polyval_mul(dctx->buffer,
+ tctx->key_powers[NUM_KEY_POWERS-1]);
+ }
+
+ memcpy(dst, dctx->buffer, POLYVAL_BLOCK_SIZE);
+
+ return 0;
+}
+
+static struct shash_alg polyval_alg = {
+ .digestsize = POLYVAL_DIGEST_SIZE,
+ .init = polyval_x86_init,
+ .update = polyval_x86_update,
+ .final = polyval_x86_final,
+ .setkey = polyval_x86_setkey,
+ .descsize = sizeof(struct polyval_desc_ctx),
+ .base = {
+ .cra_name = "polyval",
+ .cra_driver_name = "polyval-clmulni",
+ .cra_priority = 200,
+ .cra_blocksize = POLYVAL_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct polyval_tfm_ctx),
+ .cra_module = THIS_MODULE,
+ },
+};
+
+__maybe_unused static const struct x86_cpu_id pcmul_cpu_id[] = {
+ X86_MATCH_FEATURE(X86_FEATURE_PCLMULQDQ, NULL),
+ {}
+};
+MODULE_DEVICE_TABLE(x86cpu, pcmul_cpu_id);
+
+static int __init polyval_clmulni_mod_init(void)
+{
+ if (!x86_match_cpu(pcmul_cpu_id))
+ return -ENODEV;
+
+ if (!boot_cpu_has(X86_FEATURE_AVX))
+ return -ENODEV;
+
+ return crypto_register_shash(&polyval_alg);
+}
+
+static void __exit polyval_clmulni_mod_exit(void)
+{
+ crypto_unregister_shash(&polyval_alg);
+}
+
+module_init(polyval_clmulni_mod_init);
+module_exit(polyval_clmulni_mod_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("POLYVAL hash function accelerated by PCLMULQDQ-NI");
+MODULE_ALIAS_CRYPTO("polyval");
+MODULE_ALIAS_CRYPTO("polyval-clmulni");