aboutsummaryrefslogtreecommitdiff
path: root/arch/powerpc/mm/book3s64/hash_pgtable.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/powerpc/mm/book3s64/hash_pgtable.c')
-rw-r--r--arch/powerpc/mm/book3s64/hash_pgtable.c20
1 files changed, 5 insertions, 15 deletions
diff --git a/arch/powerpc/mm/book3s64/hash_pgtable.c b/arch/powerpc/mm/book3s64/hash_pgtable.c
index 64733b9cb20a..2a99167afbaf 100644
--- a/arch/powerpc/mm/book3s64/hash_pgtable.c
+++ b/arch/powerpc/mm/book3s64/hash_pgtable.c
@@ -10,7 +10,6 @@
#include <linux/mm.h>
#include <asm/pgalloc.h>
-#include <asm/pgtable.h>
#include <asm/sections.h>
#include <asm/mmu.h>
#include <asm/tlb.h>
@@ -148,6 +147,7 @@ void hash__vmemmap_remove_mapping(unsigned long start,
int hash__map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
{
pgd_t *pgdp;
+ p4d_t *p4dp;
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep;
@@ -155,7 +155,8 @@ int hash__map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
if (slab_is_available()) {
pgdp = pgd_offset_k(ea);
- pudp = pud_alloc(&init_mm, pgdp, ea);
+ p4dp = p4d_offset(pgdp, ea);
+ pudp = pud_alloc(&init_mm, p4dp, ea);
if (!pudp)
return -ENOMEM;
pmdp = pmd_alloc(&init_mm, pudp, ea);
@@ -236,7 +237,7 @@ pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long addres
* to hugepage, we first clear the pmd, then invalidate all
* the PTE entries. The assumption here is that any low level
* page fault will see a none pmd and take the slow path that
- * will wait on mmap_sem. But we could very well be in a
+ * will wait on mmap_lock. But we could very well be in a
* hash_page with local ptep pointer value. Such a hash page
* can result in adding new HPTE entries for normal subpages.
* That means we could be modifying the page content as we
@@ -250,7 +251,7 @@ pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long addres
* Now invalidate the hpte entries in the range
* covered by pmd. This make sure we take a
* fault and will find the pmd as none, which will
- * result in a major fault which takes mmap_sem and
+ * result in a major fault which takes mmap_lock and
* hence wait for collapse to complete. Without this
* the __collapse_huge_page_copy can result in copying
* the old content.
@@ -363,17 +364,6 @@ pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
* hash fault look at them.
*/
memset(pgtable, 0, PTE_FRAG_SIZE);
- /*
- * Serialize against find_current_mm_pte variants which does lock-less
- * lookup in page tables with local interrupts disabled. For huge pages
- * it casts pmd_t to pte_t. Since format of pte_t is different from
- * pmd_t we want to prevent transit from pmd pointing to page table
- * to pmd pointing to huge page (and back) while interrupts are disabled.
- * We clear pmd to possibly replace it with page table pointer in
- * different code paths. So make sure we wait for the parallel
- * find_curren_mm_pte to finish.
- */
- serialize_against_pte_lookup(mm);
return old_pmd;
}