aboutsummaryrefslogtreecommitdiff
path: root/mm/filemap.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/filemap.c')
-rw-r--r--mm/filemap.c63
1 files changed, 30 insertions, 33 deletions
diff --git a/mm/filemap.c b/mm/filemap.c
index d2e6a79fe69d..8426434042f4 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -152,25 +152,25 @@ static void filemap_unaccount_folio(struct address_space *mapping,
VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
- int mapcount;
-
pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
current->comm, folio_pfn(folio));
dump_page(&folio->page, "still mapped when deleted");
dump_stack();
add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
- mapcount = page_mapcount(&folio->page);
- if (mapping_exiting(mapping) &&
- folio_ref_count(folio) >= mapcount + 2) {
- /*
- * All vmas have already been torn down, so it's
- * a good bet that actually the folio is unmapped,
- * and we'd prefer not to leak it: if we're wrong,
- * some other bad page check should catch it later.
- */
- page_mapcount_reset(&folio->page);
- folio_ref_sub(folio, mapcount);
+ if (mapping_exiting(mapping) && !folio_test_large(folio)) {
+ int mapcount = page_mapcount(&folio->page);
+
+ if (folio_ref_count(folio) >= mapcount + 2) {
+ /*
+ * All vmas have already been torn down, so it's
+ * a good bet that actually the page is unmapped
+ * and we'd rather not leak it: if we're wrong,
+ * another bad page check should catch it later.
+ */
+ page_mapcount_reset(&folio->page);
+ folio_ref_sub(folio, mapcount);
+ }
}
}
@@ -193,16 +193,20 @@ static void filemap_unaccount_folio(struct address_space *mapping,
/*
* At this point folio must be either written or cleaned by
* truncate. Dirty folio here signals a bug and loss of
- * unwritten data.
+ * unwritten data - on ordinary filesystems.
+ *
+ * But it's harmless on in-memory filesystems like tmpfs; and can
+ * occur when a driver which did get_user_pages() sets page dirty
+ * before putting it, while the inode is being finally evicted.
*
- * This fixes dirty accounting after removing the folio entirely
+ * Below fixes dirty accounting after removing the folio entirely
* but leaves the dirty flag set: it has no effect for truncated
* folio and anyway will be cleared before returning folio to
* buddy allocator.
*/
- if (WARN_ON_ONCE(folio_test_dirty(folio)))
- folio_account_cleaned(folio, mapping,
- inode_to_wb(mapping->host));
+ if (WARN_ON_ONCE(folio_test_dirty(folio) &&
+ mapping_can_writeback(mapping)))
+ folio_account_cleaned(folio, inode_to_wb(mapping->host));
}
/*
@@ -1185,24 +1189,17 @@ static void folio_wake_bit(struct folio *folio, int bit_nr)
}
/*
- * It is possible for other pages to have collided on the waitqueue
- * hash, so in that case check for a page match. That prevents a long-
- * term waiter
+ * It's possible to miss clearing waiters here, when we woke our page
+ * waiters, but the hashed waitqueue has waiters for other pages on it.
+ * That's okay, it's a rare case. The next waker will clear it.
*
- * It is still possible to miss a case here, when we woke page waiters
- * and removed them from the waitqueue, but there are still other
- * page waiters.
+ * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
+ * other), the flag may be cleared in the course of freeing the page;
+ * but that is not required for correctness.
*/
- if (!waitqueue_active(q) || !key.page_match) {
+ if (!waitqueue_active(q) || !key.page_match)
folio_clear_waiters(folio);
- /*
- * It's possible to miss clearing Waiters here, when we woke
- * our page waiters, but the hashed waitqueue has waiters for
- * other pages on it.
- *
- * That's okay, it's a rare case. The next waker will clear it.
- */
- }
+
spin_unlock_irqrestore(&q->lock, flags);
}