aboutsummaryrefslogtreecommitdiff
path: root/drivers/accel/habanalabs/common/mmu/mmu_v1.c
blob: 845d16aaa637416aa7d5f042a2302fa697ba11d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
// SPDX-License-Identifier: GPL-2.0

/*
 * Copyright 2016-2019 HabanaLabs, Ltd.
 * All Rights Reserved.
 */

#include "../habanalabs.h"
#include "../../include/hw_ip/mmu/mmu_general.h"

#include <linux/slab.h>

#define MMU_V1_MAX_HOPS	(MMU_HOP4 + 1)

static inline u64 get_hop_pte_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
					u64 *hop_addr_arr, u64 virt_addr, enum mmu_hop_num hop_idx)
{
	u64 mask, shift;

	mask = mmu_prop->hop_masks[hop_idx];
	shift = mmu_prop->hop_shifts[hop_idx];
	return hop_addr_arr[hop_idx] +
			ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift);
}

static int dram_default_mapping_init(struct hl_ctx *ctx)
{
	struct hl_device *hdev = ctx->hdev;
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr,
		hop2_pte_addr, hop3_pte_addr, pte_val;
	int rc, i, j, hop3_allocated = 0;

	if ((!prop->dram_supports_virtual_memory) ||
			(!hdev->dram_default_page_mapping) ||
			(ctx->asid == HL_KERNEL_ASID_ID))
		return 0;

	num_of_hop3 = prop->dram_size_for_default_page_mapping;
	do_div(num_of_hop3, prop->dram_page_size);
	do_div(num_of_hop3, HOP_PTE_ENTRIES_512);

	/* add hop1 and hop2 */
	total_hops = num_of_hop3 + 2;

	ctx->dram_default_hops = kcalloc(total_hops, HL_PTE_SIZE,  GFP_KERNEL);
	if (!ctx->dram_default_hops)
		return -ENOMEM;

	hop0_addr = hl_mmu_dr_get_hop0_addr(ctx);

	hop1_addr = hl_mmu_dr_alloc_hop(ctx);
	if (hop1_addr == ULLONG_MAX) {
		dev_err(hdev->dev, "failed to alloc hop 1\n");
		rc = -ENOMEM;
		goto hop1_err;
	}

	ctx->dram_default_hops[total_hops - 1] = hop1_addr;

	hop2_addr = hl_mmu_dr_alloc_hop(ctx);
	if (hop2_addr == ULLONG_MAX) {
		dev_err(hdev->dev, "failed to alloc hop 2\n");
		rc = -ENOMEM;
		goto hop2_err;
	}

	ctx->dram_default_hops[total_hops - 2] = hop2_addr;

	for (i = 0 ; i < num_of_hop3 ; i++) {
		ctx->dram_default_hops[i] = hl_mmu_dr_alloc_hop(ctx);
		if (ctx->dram_default_hops[i] == ULLONG_MAX) {
			dev_err(hdev->dev, "failed to alloc hop 3, i: %d\n", i);
			rc = -ENOMEM;
			goto hop3_err;
		}
		hop3_allocated++;
	}

	/* need only pte 0 in hops 0 and 1 */
	pte_val = (hop1_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
	hl_mmu_dr_write_pte(ctx, hop0_addr, pte_val);

	pte_val = (hop2_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
	hl_mmu_dr_write_pte(ctx, hop1_addr, pte_val);
	hl_mmu_dr_get_pte(ctx, hop1_addr);

	hop2_pte_addr = hop2_addr;
	for (i = 0 ; i < num_of_hop3 ; i++) {
		pte_val = (ctx->dram_default_hops[i] & HOP_PHYS_ADDR_MASK) |
				PAGE_PRESENT_MASK;
		hl_mmu_dr_write_pte(ctx, hop2_pte_addr, pte_val);
		hl_mmu_dr_get_pte(ctx, hop2_addr);
		hop2_pte_addr += HL_PTE_SIZE;
	}

	pte_val = (prop->mmu_dram_default_page_addr & HOP_PHYS_ADDR_MASK) |
			LAST_MASK | PAGE_PRESENT_MASK;

	for (i = 0 ; i < num_of_hop3 ; i++) {
		hop3_pte_addr = ctx->dram_default_hops[i];
		for (j = 0 ; j < HOP_PTE_ENTRIES_512 ; j++) {
			hl_mmu_dr_write_final_pte(ctx, hop3_pte_addr, pte_val);
			hl_mmu_dr_get_pte(ctx, ctx->dram_default_hops[i]);
			hop3_pte_addr += HL_PTE_SIZE;
		}
	}

	hl_mmu_dr_flush(ctx);

	return 0;

hop3_err:
	for (i = 0 ; i < hop3_allocated ; i++)
		hl_mmu_dr_free_hop(ctx, ctx->dram_default_hops[i]);

	hl_mmu_dr_free_hop(ctx, hop2_addr);
hop2_err:
	hl_mmu_dr_free_hop(ctx, hop1_addr);
hop1_err:
	kfree(ctx->dram_default_hops);

	return rc;
}

static void dram_default_mapping_fini(struct hl_ctx *ctx)
{
	struct hl_device *hdev = ctx->hdev;
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr,
		hop2_pte_addr, hop3_pte_addr;
	int i, j;

	if ((!prop->dram_supports_virtual_memory) ||
			(!hdev->dram_default_page_mapping) ||
			(ctx->asid == HL_KERNEL_ASID_ID))
		return;

	num_of_hop3 = prop->dram_size_for_default_page_mapping;
	do_div(num_of_hop3, prop->dram_page_size);
	do_div(num_of_hop3, HOP_PTE_ENTRIES_512);

	hop0_addr = hl_mmu_dr_get_hop0_addr(ctx);
	/* add hop1 and hop2 */
	total_hops = num_of_hop3 + 2;
	hop1_addr = ctx->dram_default_hops[total_hops - 1];
	hop2_addr = ctx->dram_default_hops[total_hops - 2];

	for (i = 0 ; i < num_of_hop3 ; i++) {
		hop3_pte_addr = ctx->dram_default_hops[i];
		for (j = 0 ; j < HOP_PTE_ENTRIES_512 ; j++) {
			hl_mmu_dr_clear_pte(ctx, hop3_pte_addr);
			hl_mmu_dr_put_pte(ctx, ctx->dram_default_hops[i]);
			hop3_pte_addr += HL_PTE_SIZE;
		}
	}

	hop2_pte_addr = hop2_addr;
	for (i = 0 ; i < num_of_hop3 ; i++) {
		hl_mmu_dr_clear_pte(ctx, hop2_pte_addr);
		hl_mmu_dr_put_pte(ctx, hop2_addr);
		hop2_pte_addr += HL_PTE_SIZE;
	}

	hl_mmu_dr_clear_pte(ctx, hop1_addr);
	hl_mmu_dr_put_pte(ctx, hop1_addr);
	hl_mmu_dr_clear_pte(ctx, hop0_addr);

	kfree(ctx->dram_default_hops);

	hl_mmu_dr_flush(ctx);
}

/**
 * hl_mmu_v1_ctx_init() - initialize a context for using the MMU module.
 * @ctx: pointer to the context structure to initialize.
 *
 * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
 * page tables hops related to this context.
 * Return: 0 on success, non-zero otherwise.
 */
static int hl_mmu_v1_ctx_init(struct hl_ctx *ctx)
{
	hash_init(ctx->mmu_shadow_hash);
	return dram_default_mapping_init(ctx);
}

/*
 * hl_mmu_ctx_fini - disable a ctx from using the mmu module
 *
 * @ctx: pointer to the context structure
 *
 * This function does the following:
 * - Free any pgts which were not freed yet
 * - Free the mutex
 * - Free DRAM default page mapping hops
 */
static void hl_mmu_v1_ctx_fini(struct hl_ctx *ctx)
{
	struct hl_device *hdev = ctx->hdev;
	struct pgt_info *pgt_info;
	struct hlist_node *tmp;
	int i;

	dram_default_mapping_fini(ctx);

	if (!hash_empty(ctx->mmu_shadow_hash))
		dev_err(hdev->dev, "ctx %d is freed while it has pgts in use\n",
			ctx->asid);

	hash_for_each_safe(ctx->mmu_shadow_hash, i, tmp, pgt_info, node) {
		dev_err_ratelimited(hdev->dev,
			"pgt_info of addr 0x%llx of asid %d was not destroyed, num_ptes: %d\n",
			pgt_info->phys_addr, ctx->asid, pgt_info->num_of_ptes);
		hl_mmu_dr_free_pgt_node(ctx, pgt_info);
	}
}

static int hl_mmu_v1_unmap(struct hl_ctx *ctx,
				u64 virt_addr, bool is_dram_addr)
{
	u64 hop_addr[MMU_V1_MAX_HOPS] = {0}, hop_pte_addr[MMU_V1_MAX_HOPS] = {0}, curr_pte = 0;
	struct hl_device *hdev = ctx->hdev;
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct hl_mmu_properties *mmu_prop;
	bool is_huge, clear_hop3 = true;
	int hop_idx;

	/* shifts and masks are the same in PMMU and HPMMU, use one of them */
	mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;

	for (hop_idx = MMU_HOP0; hop_idx < MMU_HOP4; hop_idx++) {
		if (hop_idx == MMU_HOP0) {
			hop_addr[hop_idx] = hl_mmu_dr_get_hop0_addr(ctx);
		} else {
			hop_addr[hop_idx] = hl_mmu_get_next_hop_addr(ctx, curr_pte);
			if (hop_addr[hop_idx] == ULLONG_MAX)
				goto not_mapped;
		}

		hop_pte_addr[hop_idx] =
				get_hop_pte_addr(ctx, mmu_prop, hop_addr, virt_addr, hop_idx);

		curr_pte = *(u64 *) (uintptr_t) hop_pte_addr[hop_idx];
	}

	is_huge = curr_pte & mmu_prop->last_mask;

	if (is_dram_addr && !is_huge) {
		dev_err(hdev->dev, "DRAM unmapping should use huge pages only\n");
		return -EFAULT;
	}

	if (!is_huge) {
		hop_idx = MMU_HOP4;
		hop_addr[hop_idx] = hl_mmu_get_next_hop_addr(ctx, curr_pte);
		if (hop_addr[hop_idx] == ULLONG_MAX)
			goto not_mapped;

		hop_pte_addr[hop_idx] =
				get_hop_pte_addr(ctx, mmu_prop, hop_addr, virt_addr, hop_idx);
		curr_pte = *(u64 *) (uintptr_t) hop_pte_addr[hop_idx];
		clear_hop3 = false;
	}

	if (hdev->dram_default_page_mapping && is_dram_addr) {
		u64 default_pte = (prop->mmu_dram_default_page_addr &
				HOP_PHYS_ADDR_MASK) | mmu_prop->last_mask |
					PAGE_PRESENT_MASK;
		if (curr_pte == default_pte) {
			dev_err(hdev->dev,
				"DRAM: hop3 PTE points to zero page, can't unmap, va: 0x%llx\n",
					virt_addr);
			goto not_mapped;
		}

		if (!(curr_pte & PAGE_PRESENT_MASK)) {
			dev_err(hdev->dev,
				"DRAM: hop3 PTE is cleared! can't unmap, va: 0x%llx\n",
					virt_addr);
			goto not_mapped;
		}

		hop_idx = MMU_HOP3;
		hl_mmu_dr_write_final_pte(ctx, hop_pte_addr[hop_idx], default_pte);
		hl_mmu_dr_put_pte(ctx, hop_addr[hop_idx]);
	} else {
		if (!(curr_pte & PAGE_PRESENT_MASK))
			goto not_mapped;

		if (hop_addr[MMU_HOP4])
			hl_mmu_dr_clear_pte(ctx, hop_pte_addr[MMU_HOP4]);
		else
			hl_mmu_dr_clear_pte(ctx, hop_pte_addr[MMU_HOP3]);

		if (hop_addr[MMU_HOP4] && !hl_mmu_dr_put_pte(ctx, hop_addr[MMU_HOP4]))
			clear_hop3 = true;

		if (!clear_hop3)
			goto mapped;

		for (hop_idx = MMU_HOP3; hop_idx >= 0; hop_idx--) {
			hl_mmu_dr_clear_pte(ctx, hop_pte_addr[hop_idx]);

			if (hop_idx == MMU_HOP0)
				break;

			if (hl_mmu_dr_put_pte(ctx, hop_addr[hop_idx]))
				goto mapped;
		}
	}

mapped:
	return 0;

not_mapped:
	dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n",
		virt_addr);

	return -EINVAL;
}

static int hl_mmu_v1_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
			u32 page_size, bool is_dram_addr)
{
	u64 hop_addr[MMU_V1_MAX_HOPS] = {0}, hop_pte_addr[MMU_V1_MAX_HOPS] = {0}, curr_pte = 0;
	struct hl_device *hdev = ctx->hdev;
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct hl_mmu_properties *mmu_prop;
	bool is_huge, hop_new[MMU_V1_MAX_HOPS] = {false};
	int num_hops, hop_idx, prev_hop, rc = -ENOMEM;

	/*
	 * This mapping function can map a page or a huge page. For huge page
	 * there are only 3 hops rather than 4. Currently the DRAM allocation
	 * uses huge pages only but user memory could have been allocated with
	 * one of the two page sizes. Since this is a common code for all the
	 * three cases, we need this hugs page check.
	 */
	if (is_dram_addr) {
		mmu_prop = &prop->dmmu;
		is_huge = true;
	} else if (page_size == prop->pmmu_huge.page_size) {
		mmu_prop = &prop->pmmu_huge;
		is_huge = true;
	} else {
		mmu_prop = &prop->pmmu;
		is_huge = false;
	}

	num_hops = is_huge ? (MMU_V1_MAX_HOPS - 1) : MMU_V1_MAX_HOPS;

	for (hop_idx = MMU_HOP0; hop_idx < num_hops; hop_idx++) {
		if (hop_idx == MMU_HOP0) {
			hop_addr[hop_idx] = hl_mmu_dr_get_hop0_addr(ctx);
		} else {
			hop_addr[hop_idx] =
				hl_mmu_dr_get_alloc_next_hop_addr(ctx, curr_pte, &hop_new[hop_idx]);
			if (hop_addr[hop_idx] == ULLONG_MAX)
				goto err;
		}

		hop_pte_addr[hop_idx] =
				get_hop_pte_addr(ctx, mmu_prop, hop_addr, virt_addr, hop_idx);
		curr_pte = *(u64 *) (uintptr_t) hop_pte_addr[hop_idx];
	}

	if (hdev->dram_default_page_mapping && is_dram_addr) {
		u64 default_pte = (prop->mmu_dram_default_page_addr &
					HOP_PHYS_ADDR_MASK) | mmu_prop->last_mask |
						PAGE_PRESENT_MASK;

		if (curr_pte != default_pte) {
			dev_err(hdev->dev,
				"DRAM: mapping already exists for virt_addr 0x%llx\n",
					virt_addr);
			rc = -EINVAL;
			goto err;
		}

		for (hop_idx = MMU_HOP1; hop_idx < num_hops; hop_idx++) {
			if (hop_new[hop_idx]) {
				dev_err(hdev->dev, "DRAM mapping should not allocate more hops\n");
				rc = -EFAULT;
				goto err;
			}
		}
	} else if (curr_pte & PAGE_PRESENT_MASK) {
		dev_err(hdev->dev,
			"mapping already exists for virt_addr 0x%llx\n",
				virt_addr);

		for (hop_idx = MMU_HOP0; hop_idx < num_hops; hop_idx++)
			dev_dbg(hdev->dev, "hop%d pte: 0x%llx (0x%llx)\n", hop_idx,
					*(u64 *) (uintptr_t) hop_pte_addr[hop_idx],
					hop_pte_addr[hop_idx]);

		rc = -EINVAL;
		goto err;
	}

	curr_pte = (phys_addr & HOP_PHYS_ADDR_MASK) | mmu_prop->last_mask
			| PAGE_PRESENT_MASK;

	hl_mmu_dr_write_final_pte(ctx, hop_pte_addr[num_hops - 1], curr_pte);

	for (hop_idx = MMU_HOP1; hop_idx < num_hops; hop_idx++) {
		prev_hop = hop_idx - 1;

		if (hop_new[hop_idx]) {
			curr_pte = (hop_addr[hop_idx] & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
			hl_mmu_dr_write_pte(ctx, hop_pte_addr[prev_hop], curr_pte);
			if (hop_idx != MMU_HOP1)
				hl_mmu_dr_get_pte(ctx, hop_addr[prev_hop]);
		}
	}

	hl_mmu_dr_get_pte(ctx, hop_addr[num_hops - 1]);

	return 0;

err:
	for (hop_idx = num_hops; hop_idx > MMU_HOP0; hop_idx--) {
		if (hop_new[hop_idx])
			hl_mmu_dr_free_hop(ctx, hop_addr[hop_idx]);
	}

	return rc;
}

/*
 * hl_mmu_v1_swap_out - marks all mapping of the given ctx as swapped out
 *
 * @ctx: pointer to the context structure
 *
 */
static void hl_mmu_v1_swap_out(struct hl_ctx *ctx)
{

}

/*
 * hl_mmu_v1_swap_in - marks all mapping of the given ctx as swapped in
 *
 * @ctx: pointer to the context structure
 *
 */
static void hl_mmu_v1_swap_in(struct hl_ctx *ctx)
{

}

static int hl_mmu_v1_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
				struct hl_mmu_hop_info *hops)
{
	struct hl_device *hdev = ctx->hdev;
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct hl_mmu_properties *mmu_prop;
	bool is_dram_addr, is_pmmu_addr, is_pmmu_h_addr, is_huge;
	int i, used_hops;

	is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
						prop->dmmu.start_addr,
						prop->dmmu.end_addr);
	is_pmmu_addr = hl_mem_area_inside_range(virt_addr, prop->pmmu.page_size,
						prop->pmmu.start_addr,
						prop->pmmu.end_addr);
	is_pmmu_h_addr = hl_mem_area_inside_range(virt_addr,
						prop->pmmu_huge.page_size,
						prop->pmmu_huge.start_addr,
						prop->pmmu_huge.end_addr);
	if (is_dram_addr) {
		mmu_prop = &prop->dmmu;
		is_huge = true;
	} else if (is_pmmu_addr) {
		mmu_prop = &prop->pmmu;
		is_huge = false;
	} else if (is_pmmu_h_addr) {
		mmu_prop = &prop->pmmu_huge;
		is_huge = true;
	} else {
		return -EINVAL;
	}

	used_hops = mmu_prop->num_hops;

	/* huge pages use lesser hops */
	if (is_huge)
		used_hops--;

	hops->hop_info[0].hop_addr = hl_mmu_dr_get_phys_hop0_addr(ctx);
	hops->hop_info[0].hop_pte_addr =
			hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, 0,
					hops->hop_info[0].hop_addr, virt_addr);
	hops->hop_info[0].hop_pte_val =
			hdev->asic_funcs->read_pte(hdev,
						hops->hop_info[0].hop_pte_addr);

	for (i = 1 ; i < used_hops ; i++) {
		hops->hop_info[i].hop_addr =
			hl_mmu_get_next_hop_addr(ctx,
					hops->hop_info[i - 1].hop_pte_val);
		if (hops->hop_info[i].hop_addr == ULLONG_MAX)
			return -EFAULT;

		hops->hop_info[i].hop_pte_addr =
				hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i,
						hops->hop_info[i].hop_addr,
						virt_addr);
		hops->hop_info[i].hop_pte_val =
				hdev->asic_funcs->read_pte(hdev,
						hops->hop_info[i].hop_pte_addr);

		if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK))
			return -EFAULT;

		if (hops->hop_info[i].hop_pte_val & mmu_prop->last_mask)
			break;
	}

	/* if passed over all hops then no last hop was found */
	if (i == mmu_prop->num_hops)
		return -EFAULT;

	if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK))
		return -EFAULT;

	hops->used_hops = i + 1;

	return 0;
}

/*
 * hl_mmu_v1_prepare - prepare mmu  for working with mmu v1
 *
 * @hdev: pointer to the device structure
 */
void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu)
{
	mmu->init = hl_mmu_dr_init;
	mmu->fini = hl_mmu_dr_fini;
	mmu->ctx_init = hl_mmu_v1_ctx_init;
	mmu->ctx_fini = hl_mmu_v1_ctx_fini;
	mmu->map = hl_mmu_v1_map;
	mmu->unmap = hl_mmu_v1_unmap;
	mmu->flush = hl_mmu_dr_flush;
	mmu->swap_out = hl_mmu_v1_swap_out;
	mmu->swap_in = hl_mmu_v1_swap_in;
	mmu->get_tlb_info = hl_mmu_v1_get_tlb_info;
}